
Suggestions for Writing Up a SCORE Contest
Project

The ICSE 2009 SCORE Organizers∗

v 1.01, produced August 14, 2008

Premise

SCORE contest entries require a report of approximately 20 pages. There are no
strict rules regarding the format or content of this report. However, some guidance
— suggestions, rather than strict requirements — may be useful to teams. This
document attempts to provide some useful suggestions.

1 Introduction

Producing a report is very much like producing a software system. There is no
single “right” way to do it, and there are a wide variety of approaches, but there are
also a few general problems and approaches that are largely shared across all the
successful approaches. One of these (just as for programming) is that a good report
requires careful design. Just sitting down to write, starting from the beginning, can
sometimes (not often, actually) produce a reasonable one-page document, but is
never adequate for a 5 page document, let alone a 20 page report. Also as in
software production, we should anticipate from the beginning that revision will be
necessary. Plan on producing several partial prototypes before you produce a full
report you are happy with, and don’t be reluctant to refactor the initial design as
improved structure becomes clear to you.

Another way that writing the SCORE report is like constructing a software
project is that we seldom start from scratch. Surely you incorporate existing soft-
ware components in your projects when possible, in preference to writing new
components with the same functionality. Where it is necessary to write new code,
you probably start with some cut-and-paste from similar code you have written be-
fore or found, or you at least refer to example code. Much of the content you will
need in a SCORE report is likely also to exist in some form already, though it will
probably require some rework.

∗This document was collectively edited by the SCORE organizing committee. A first draft was
written by Michal Young, and revisions were contributed by Matteo Rossi, in consultation with other
organizers.

1



Writing up a SCORE Project | 2

2 How to get started

In the following sections, we describe several pieces of content that we would
expect to find in most project reports. These will apply to various degrees in par-
ticular projects. For example, reqirements analysis might be the key concern in
one project, while another project may have started from a fairly complete require-
ments statement and need only a reference and a brief summary for their project
report. The list of topics we provide is a starting point for designing your report,
rather than an outline of the report you should produce.

One way to proceed is as follows:

• Read through the suggested topics below, and make a note of the degree to
which each topic applies to your project and the major points you would want
to include in your report. Specific notes (e.g., “We really need to discuss how
we ensure that the encrypted database would not reveal real email addresses
even if an adversary managed to steal it”) are more useful than general notes
(“Discuss key design decisions and rationale”).

If some of the topics listed below are not relevant to your project, consider
why. Perhaps your report should include a short rationale for omitting that
topic.

• Consider what is missing from the list. If you covered each of the topics we
have listed, what important aspects of your project would not be discussed
adequately? Add those to your list.

• Make a first, very rough cut at estimating how much you should write for
each topic. (Here is where being specific about content starts to pay off.)
Although 20 pages may sound like a lot, there is a good chance you will find
that the lengths of your topic items add up to much more. If so, now is the
time to make a very rough page budget, noting how much space you plan to
actually give to each topic. This page budget will change as you flesh out
your outline and report, but even a rough page budget will help in outlining.

• Make a first content outline. A content outline doesn’t just have bullets like
“requirements discussion”; it includes very brief (usually one line) sum-
maries of the actual content that will go in each part of your report. Now
you should be rearranging and structuring the material, looking for a good
order of presentation that will help a reader absorb it efficiently. It may be
similar to the order of topics we list below, but it need not be.

• Draft an executive summary. An executive summary is at most one page
long, and serves as a summary of the whole report aimed at a busy manager
who will read at most a single page (less if he doesn’t like the project or
your writing). Writing such a summary is hard work and typically requires
many revisions, but it has a big payoff: If you can write a coherent one-page



Writing up a SCORE Project | 3

synopsis that effectively conveys all the key points, then writing the main
body of the report becomes much easier. It is just a matter of putting back
some of the details that you had to crush out of the summary.

• Revise your content outline in light of what you learned from writing the
executive summary. That does not mean that they need to have precisely the
same structure, but it is common to discover that some reordering will help
“tell the story” more efficiently.

• Assign parts. Each member of your team should have a clear writing as-
signment (e.g., “John will write section 3.4 on protecting the database, Jill
will write section 3.5 on the interface between database and mail forwarding
subsystem, and John and Jill will be first reviewers of each others sections”.)
One person, possibly the team member whom you think has strongest writ-
ing skills, should be designated as the “paper boss” responsible for reviewing
and integrating all contributions. The paper boss will probably need a lighter
writing assignment than others, to provide enough time for review and inte-
gration.

Treat integration of the document like integration of a software system. This
means: Plan it, do it often, check it continuously. Provide high quality mod-
ules to be integrated, because the task is hopeless if checking and fitting the
overall structure is mixed with excessive debugging of the individual contri-
butions. The paper boss must have the ability to send a module of insufficient
quality back for a rewrite by its author (or reassignment to another author) if
its quality is not good enough.

• Review, revise, repeat. Treat the document as a series of prototypes, and have
a “build plan” that tackles especially thorny parts first. Have many concrete
milestones, and gauge your progress against them. Integrate and evaluate on
a regular basis.

3 Major topics

Despite a wide variety of application domains and software development method-
ologies, the following topics are relevant to most projects in some form.

3.1 Development process

When developing your software project, you will (consciouosly or not) follow
some kind of development process: “waterfall”, “spiral”, “agile”, etc. If the par-
ticular development process you followed impacted in a significant way the issues
you faced and the artifacts you produced, consider stating from the begninning
what your process was, so that the rest of your report will be read in light of that.



Writing up a SCORE Project | 4

3.2 Requirements: Problem statement

It’s hard to build a software system if you don’t have a pretty good idea of the
problem you are trying to solve. It’s impossible to explain your project to others —
managers, users, future employers who ask to see samples of your work — unless
you can clearly explain what requirements your system was intended to solve.

A problem statement differs from a requirements specification. We say it is
“in the problem domain” rather than “in the solution domain”. A requirements
specification describes one way of solving the problem described in the problem
statement, but there may be others.

For example, the following might appear in a problem statement:

Provide to the blind or low-vision user an accessible indication of po-
sition (“cursor”) in the currently displayed map.

The following might appear in the requirements specification, as the selected
realization of that requirement:

Current position (virtual “cursor”) on the map, relative to a grid with
major and minor divisions, is indicated in two ways. First, when the
cursor crosses a grid line, a (configurable) tone is sounded. In the
initial implementation this tone will be a “click” (with aurally distinct
click sounds for vertical and horizontal grid lines, and for major and
minor divisions). Second, each major grid division has a name, and
this name will be spoken when a (configurable) key combination is
pressed. Grid sounds and the key combination for speaking the current
location are configurable through the map style sheet.

Common presentations of requirements statements include scenarios (in var-
ious forms including “uses cases” and “user stories”; other forms are of course
possible).

3.3 Requirements specification

A requirements specification describes what a system must do. It is often inter-
woven with a requirements problem statement, but is logically distinct, because it
describes one solution to the problem. Some development methodologies include
extensive formal or semi-formal requirements specifications. In other cases, the
clearest specification of system functionality as perceived by the user may be a
user manual. Use cases and user stories can also express aspects of a requirements
statement.

Requirements specifications can include aspects of behavior that are not di-
rectly visible to the user in normal use, but which are nonetheless important char-
acteristics from the user’s point of view. For example:



Writing up a SCORE Project | 5

A forwarding host for a noncemail system shall be constructed such
that, even if an adversary were to obtain unlimited access to all persis-
tent storage on the forwarding host, that information would provide the
adversary with at most the individual destination addresses for which
the adversary had separately obtained keys.

Formal and semi-formal models of various kinds (e.g., entity relationship dia-
grams, message sequence charts, use case diagrams) are often but not always part
of a requirements specification. Since software specification inevitably includes
design decisions (choosing to solve a problem one way rather than another way),
requirements specifications are often accompanied by a rationale explaining the
relation between the solution statement and the problem statement.

3.4 Architectural design

The architectural design describes how the project is broken into major parts, how
those parts are related to each other, and how together they realize the overall sys-
tem. Architectural design descriptions vary widely, but it is rare to find a successful
system without a clear overall structure. (Unsuccessful systems with no clear over-
all structure are a good deal easier to find.)

Description of the architectural design is typically the starting point for de-
scribing other aspects of the project, such as the project build plan (even when the
schedule is highly iterative and many major parts are developed in tandem). It is
also a good place to indicate major technical and schedule risks (e.g., if some com-
ponents are well understood and others less so) and planned or potential system
evolution.

A familiar example of architectural design is division of a web-based applica-
tion into “tiers”, e.g., a database tier, a business logic tier, and a presentation tier.
When a common architectural pattern (3-tier, MVC, etc.) is used, the common
pattern is a starting point for describing how that template has been instantiated for
a particular project.

3.5 Project plan

Most SCORE projects will have strict internal deadlines (e.g., completion by the
end of an academic term) in addition to deadlines imposed by the SCORE contest.
Most teams will find it useful to carefully plan their effort so that they achieve a
good result in their limited time. It is appropriate to describe the project plan and
its execution in a SCORE report, although in most cases a narrative account of the
project does not provide a very useful overall structure for the report as a whole.

A rudimentary plan might include milestones for products including prototypes
with selected product features, user manual, etc. More detailed plans are usually
heavily cross-referenced to architectural design. For example, we might see the
following in the development plan for a single-use email address system:



Writing up a SCORE Project | 6

Demo 2, week 3: On Friday of week 3 the first integration of nonce-
mail mail forwarding will take place. The following features will
be demonstrated:

• Obtain a single use email address through a web page. The
user will enter a destination email address and a memoran-
dum note, and will obtain in return another, dedicated email
address (the “nonce” address).
• Forward nonce messages. An email message sent to the

nonce address will be forwarded by the noncemail forward-
ing host to the destination address, with the memorandum
note inserted in the beginning of the message.

This demo will require initial, partial versions of the web inter-
face component, the nonce database, nonce production, nonce
interpretation, and email forwarding. The key goal is to provide
a working end-to-end system in which more functional versions
of each of these components can be incorporated incrementally.
Each of the components integrated in this version is a minimal
stub:

• The web interface will be a simple HTML form, lacking
the planned javascript support and cookie management to
minimize interactions necessary to obtain and paste a nonce
address.
• Nonce production and interpretation are simple stubs with

no actual encryption.
• Neither nonce management functions (e.g., deactivating a

nonce address that has been identified as a source of spam)
nor the web interface to those functions will be included in
this prototype.
• Database functions will be limited to those required for stor-

ing and retrieving nonce forwarding entries, and will not in-
clude management (periodic backups, graceful start-up and
shut-down, etc.) nor performance tuning.
• Mail forwarding will support only simple plain-text mes-

sages (RFC 822). Results of attempting to forward a MIME-
structured message are undefined in this prototype.

In reporting on the project plan (and perhaps in consructing a plan), the follow-
ing guidelines may prove useful:

• A major goal in project planning is to provide process visibility, which means
the ability to monitor progress against the plan. This is as true for agile
processes, in which the plan may be developed incrementally along with the
project, as it is for more conventionally structured projects.



Writing up a SCORE Project | 7

• Risk planning is closely associated with process visibility. It is very often
useful to explicitly describe perceived risks and how they were addressed in
the plan. (Often this means trying to make any unpleasant surprises appear
earlier, rather than later in the project.)

• Like every other artifact produced in software development, a plan is the
product of design. It has goals (e.g., balancing effort across time and team
members, and minimizing risk of unpleasant surprises near the end of a
project) and constraints (a limited supply of team members and time, a hard
deadline). A design rationale, explaining why certain design choices were
made rather than others, is useful in the description of any designed artifact,
including a project plan.

An evaluation plan may be integrated into the project plan, or you may find it
useful to write a separate section describing the approach you took to validation
and verification.

3.6 Management plan

There may be aspects of project management that you consider important to report,
but which are not captured adequately in the project plan. These can be described
separately in a management plan. In some cases (particularly for agile processes),
the management plan may take the place of a more detailed project plan.

Here is an example of something we might see in a management plan for a
team adopting an agile process:

In lieu of fixed development roles through the project, a portion of the
regular Friday meeting was devoted to assigning roles for the follow-
ing week. There were three parts to this process. First, development
goals for the following week were listed on the whiteboard, with re-
quired expertise, effort estimates, and observable milestones for each.
Then, as a group, we divided those development goals among team
members, designating in each case a primary developer and a sec-
ondary. The primary developer was responsible for providing work-
ing code, an automated unit test suite, and documentation to the sec-
ondary for review by Wednesday evening of the following week. The
secondary was responsible for returning a review by Thursday at five.
In addition, Tuesday morning between 10:00 and 11:00 was desig-
nated as the period when a primary could request to swap the pri-
mary/secondary designation on a particular work assignment, and the
secondary could either accept that swap (if his or her own work as-
signment was going well enough to make the extra work feasible) or
refuse it.



Writing up a SCORE Project | 8

3.7 Implementation

If implementing some part of your system required solving non-trivial technical
problems (e.g., developing efficient data structures or algorithms), consider dis-
cussing those problems and your solutions and rationale in your report. For exam-
ple:

We set an objective of no more than 0.05 seconds latency between
input and appropriate audio output. For our sample campus map con-
taining a few thousand elements (buildings, streets, etc), we obtained
satisfactory response using standard Java graphics collision-detection
methods against each element in the whole map. However, our mea-
surements indicated likely problems with more complex maps or less
powerful computers. For a “torture test” we synthesized by combin-
ing ten slightly perturbed copies of the main campus map, exhaustive
hit-testing required up to 0.10 seconds on a typical desktop computer
and over 0.5 seconds on an older laptop computer.

To obtain sufficiently fast hit detection with complex maps, we em-
ploy a quadtree display list data structure (see Figure 1). We maintain
a separate quadtree for each map layer, and represent shapes in world
coordinates rather than screen coordinates, so that the structure need
not be recomputed as the map is scrolled or layers are turned on and
off. As in classic quadtree display list structures, the map area is di-
vided into four quadrants, and each quadrant is recursively subdivided,
until each node in the quadtree contains no more than k elements. k
is a compile-time configurable constant currently set to 4 to balance
search time with space taken up by the tree.

Our quadtree structures make use of one key simplifying assumption:
Shapes within each layer are non-overlapping. This guarantees that
recursive subdivision of a quadtree region into sub-regions will termi-
nate. Without this assumption, it would be necessary to clip objects
to quadtree nodes and discard those that are completely obscured by
others. Assuming non-overlapping shapes considerably simplified our
quadtree-building code and saves space since we do not need to either
compute or store clipped versions of map shapes. Searching for the
top-most shape covering cursor position (x, y) is particularly simple:
We convert (x, y) to world coordinates (xw, yw) and search each map
layer in order from top to bottom, stopping when we first encounter a
shape that covers (xw, yw).

Using our quadtree structure, we measured hit-detection times consis-
tently less than 0.01 seconds, even using our torture-test example map
on an older laptop computer.



Writing up a SCORE Project | 9

Figure 1: The quadtree display list structure, used for fast hit detection, subdivides
display regions containing any part of more than k shapes (k = 1 in the illus-
tration, but k = 4 in the actual implementation). The root node of the quadtree
represents the whole map area, and leaf nodes (containing lists of shapes) rep-
resent regions that are not further subdivided; interior quadtree nodes represent
subregions that are further subdivided.

3.8 Validation and Verification

To convince yourself of the correctness and effectiveness of your design/implementation
you have most probably carried out some activity, typically (but not limited to) test-
ing.

A description of the test plan you created, of how it was carried out, and of
its outcomes (e.g. if it unearthed unexpected errors and problems) is useful to
convince an evaluator of your project of the soundness of your solutions.

You may also have carried out additional verification activities during devel-
opment, including automated checks or formal analysis of parts of your design or
implementation. If you did, a brief description of which techniques you used and
what (if any) problems were discovered can be included in your report.

For example:

Because multiple users may interact with noncemail concurrently, we
were concerned with the possibility of race conditions, which might
go undetected in small-scale testing but surface in heavy usage. We
avoided fine-grain data integrity problems by using transactions in
the MySQL database management system to manage the table re-
lating nonce addresses to real addresses. Grouping database opera-
tions as relatively coarse atomic transactions (e.g., “add a nonce for-
warding entry to the table”) freed us from reasoning about fine-grain
races and reduced the burden of exercising fine-grain concurrency be-



Writing up a SCORE Project | 10

tween operations in testing. It also clarified the invariant condition
that should hold between transactions, leaving us a verification obli-
gation of showing that each transaction takes the database from any
legal state to another legal state.

We manually listed conditions relevant to each transaction (things that
can vary while the invariant still holds), and the expected behavior un-
der each condition. This prompted us, for example, to consider and
document the expected behavior when a user attempts to deactivate a
forwarding address that has been previously deactivated. These de-
scriptions of expected behavior were used in four ways: As directions
to the programmer implementing the corresponding module, as unit
and system test obligations (we required unit and system test suites to
include each of the documented scenarios), as a check-list for a devel-
oper inspecting another developer’s code, and as a note to the author
of user documentation to explain possible outcomes to users.

In addition to this (manual) analysis and systematic testing, we cre-
ated a load test harness in which simulated users and simulated mail
sources repeatedly and randomly carry out a set of noncemail sce-
narios at high speed. Load testing did not uncover any real errors in
our implementation, but did reveal some mistakes in our case analy-
sis. These mistakes were all due to one fundamental problem: The
mail transport system itself is not under the same concurrrency con-
trol as the database, so some seemingly “impossible” sequences are in
fact possible. For example, it is possible for mail forwarded through
a nonce address to arrive at the real address after the nonce has been
deactivated or deleted, because it spends some time “in transit” after
forwarding. We revised our design documentation and user documen-
tation to reflect this.

3.9 Outcomes and lessons learned

Some projects may be essentially completed within the contest period. Others may
be (according to plan, or not) partial implementations. A SCORE report should
indicate what was actually accomplished. Screen shots, input/output samples, ex-
cerpts of user manuals, and descriptions of actual use may be included as appro-
priate.

It is also appropriate to recount (briefly) lessons learned from the project ex-
perience, especially since SCORE projects will be carried out by students in an
educational setting. Specific lessons (“In retrospect we should have recognized
the technical risk in integrating an unfamiliar database component and planned an
early integration test”) are more valuable than generic lessons (“project planning is
harder than it sounds”).



Writing up a SCORE Project | 11

4 Summary

This document is not a template for your SCORE submission. Some of the content
we have suggested above may be a good fit for your particular project, and some
may be irrelevant (but in that case you should have a clear reason why it is irrele-
vant). It may be in the wrong order. There may be other issues that were critical
to your project, and should clearly be part of your report, which are not listed here.
Nonetheless we hope that these suggestions will help you think about the content
of your report and craft it to be useful to the judges in evaluating your project. We
hope also that you find your SCORE report a useful document for other purposes,
such as describing your project experience to prospective employers.


