

SCORE GPXCleaner project

DSD GPXCleaner

 Tin Tvrtković, tin.tvrtkovic@fer.hr
 Tihomir Bregović, tihomir.bregovic@fer.hr
 Federico Ciccozzi, fci08001@student.mdh.se
 Jenny Jutterström, jjm05001@student.mdh.se
 Josip Labor, josip.labor@fer.hr
 Pablo Santibañez Jara, psz05002@student.mdh.se
 Coen Tempelaars, cts08001@student.mdh.se

January, 2009

Faculty of Electrical Engineering and Computing,
University of Zagreb

Mälardalen University

 1

1. Executive Summary
Global positioning system [1] (GPS) devices are used in a wide range of outdoor activities, such as

cycling, hiking and running, to allow their users to record and analyze their performed excursions. Services for
displaying the gathered GPS records on a map and for sharing the recorded adventures between others are
therefore becoming increasingly popular, but the raw GPS data obtained directly from the GPS device is often
poorly suited for instant sharing. The GPS data files often contain unnecessary information, such as too many
points or unwanted sections which may not be interesting for sharing. The GPS data may also be partly distorted
with travel gaps or misplaced points due to a lost satellite connection. Therefore, the DSD GPXCleaner
application was developed to enable users to manipulate the information received from their GPS devices before
sharing it with others. For example, DSD GPXCleaner allows users to view and edit the records of their travels
on a map, to join several excursions into one and to reduce the total number of recorded points with a minimal
deviation from the original track.

The application was developed in eleven weeks during the Distributed System Development [2] (DSD)
course at Mälardalen University [3] (MdH) in Sweden and at the Faculty of Electrical Engineering and Computing
[4] (FER), University of Zagreb in Croatia. The course goal is to give students an insight in the complexity of
distributed software development, provide training for working in distributed teams and to use the available
techniques to facilitate distributed development. The project was therefore performed in a distributed
environment with seven project members (of five different nationalities) located in two countries, this implicates
cultural differences, teleconferences and the need for virtual cooperation without the possibility of meeting in
person. The information exchange and frequent communication were therefore of the great importance for the
project. Except from local meetings, the whole project team performed regular meetings every week both using
Skype [5] and a video conference system. The contact with our customer Michal Young has also been important
during the project process to avoid misunderstandings. Since we could not meet our customer, email
communication involving written reports and illustrated PDF documents was used to validate the requirements
and provide progress reports. The project had predefined milestones, such as document delivery dates and
application prototype demonstrations, which made the waterfall model well suited as a start of the developing
process. When most of the document milestones were met, we were able to use a more iterative model during
the last process phases, implementation and testing, to avoid integration problems and to ensure that each
component worked correctly.

The DSD GPXCleaner system design was modeled using Unified Modeling Language [6] (UML) to
define the system structure and behavior and to allow easy discussion between all project members, before the
distributed implementation. The system design follows a Model-View-Control pattern and the application is
implemented in Java. We used commercial off-the-shelf software developed by NASA for the embedded map
component, which is open source and therefore could be modified during the implementation to satisfy our
needs. The application components were tested during the whole project and the application was verified at the
end by using a requirement based test method. The project result is an application that fulfills all customer
reqirements and provides adiditional features such as a simple view mode for most frequently used features.

Before starting the DSD GPXCleaner project, team members were all inexperienced in distributed
development at the project start and have now learned distributed developing techniques and also received
valuable experience in a global environment.

2. Introduction
GPX [7] data files received from a GPS unit often contain information which the user wants to manage

and manipulate, such as discard travel parts or automatically reduce the number of track points without losing
valuable information. Our solution for handling the recorded files is called DSD GPXCleaner. The application
was developed during eleven weeks by seven project members located in two countries. The project was a part
of the university course DSD at MdH and at the FER. The goal of the project was therefore to get experience in
working in a distributed environment, focus on communication and to develop a product which satisfies the
requirements of our customer.

The report begins with an introduction to the product requirements by defining the problem statement in
Section 3, followed by a section regarding the project scope and the main project challenges. The following
sections (Section 5, Section 6 and Section 7) describe the development process applied and define the project
and management plan. Section 8, contains the product requirements and includes an example use case, and a
sample of the complete list of requirements agreed upon by the customer. Section 9 describes the system

 2

design, and includes conceptual, architectural, structural and behavioral design examples. The system
implementation and the mathematical algorithms are discussed in Section 10. Section 11, contains information
about the test methods used to verify the DSD GPXCleaner application and its components. Finally, Section 12
concludes the report by mentioning the project outcomes and team member experiences of the project.

3. Requirements: Problem statement
GPS units are growing in popularity, from specialized ones to brand new mobile phones with integrated

GPS device. As such, more and more people want to share or store their tracks. However stored tracks often
contain multiple thousands of points, most of them useless to the user but taking up unnecessary storage and
bandwidth, providing very slow rendering on maps. Since a much smaller number is needed to display the track
correctly, the key requirement of the project is an ability to reduce a number of points of user-recorded GPS
tracks conserving the track shape as closely as possible, while providing the user with a measure of precision of
the reduced track compared to the original one.

Beside the main problem – a large number of track points, there are several smaller ones that a user of
a GPS device could face: the user might have turned on the device too early or too late and now would like to
remove those points, or if a user had two tracks recorded on different dates but would like to join them together,
or he would like to delete a part of a track. During track recording, due to weather disturbances, device errors,
signal loss, etc., “wild points” can happen. A wild point is a point that is recorded by GPS device by error, often
placed away from the rest of the track, and should be removed. Finally, the user would probably wish to rename
his track, to help with organization.

 Let’s say that we are at home and are going to university. We turn our device on and make ourselves on
the way. During our walk we meet a friend and agree to go for a coffee with him. After the coffee we are of
course late and decide to take subway. A quick walk from subway and there we are, ready on time for second
part of the course. When we get home we look at the map and we have something to see. There’s our fieldtrip
for coffee but because we are going to show this to our parent we want to cut it out, luckily we have an older
track from which we can take the part we need and paste it to fit the erased one. Because we took the subway a
lot of disturbances occurred and there are bunch of wild points we want to remove. Finally we were at university,
but since we were late we forgot to run the device right away and now we have bunch of points in the same
place. So we use GPXCleaner application to drop from two thousand points to mere 50. Happily we rename the
track and upload it online for our parents to see it. The following figures illustrate our path before and after
managing the track. (Note that there is no subway or coffee house − the map is just to illustrate real world
scenario.)

Figures 3.1 and 3.2: Path simplification

4. Scope of the Project and Main Challenges
Since the DSD GPXCleaner application was developed during the university DSD course, the project

scope includes both, properties defined by our supervisors to enhance the importance of the distributed progress
and also qualities to achieve a good project process considering the SCORE [8] competition.

The course progressed 11 weeks in total with a workload of 20 hours per person per week. One of the
objectives of this course was to accomplish a good result in the SCORE competition by performing a good

 3

collaboration in the project team, having regular contact with our customer and considering the difficulties of
distributed development and dealing with cultural differences.

The project team consists of seven members located in Croatia and Sweden, with university supervisors
positioned in both countries. The project team is organized in two local teams, with the project leader located at
FER and a Swedish team leader for the local project management at MdH. All project members have a computer
science background, however with different specialties and from several universities. Two of the project
members located in Sweden are international master students, originally studying at the University of L'Aquila in
Italy and at the Eindhoven University of Technology in the Netherlands. The scope of this project was to develop
a product which satisfies our customer, by performing a distributed developing process with project members
located at separate places and from different background and cultures. Part of the project scope was also to
develop comprehensive documentation detailing both the finished product and the process used, including: the
project plan, weekly reports, the requirement specification, the design specification and the acceptance test plan
[9].

The main challenges in this project involve both distributed development risks as well as project
management difficulties when producing a product in a short time. Since the project members where located in
two countries with different cultures, one important challenge was to create a good team spirit to facilitate the
collaboration. Because the whole group could not meet in person, frequent and agile communication was
important through the whole project process and to never let the distance be an excuse for not having a meeting.
We therefore performed regular team meetings via a teleconference system using Skype, with detailed meeting
notes (Minutes of Meeting documents published to project web pages) to avoid any misunderstandings and to
ensure that persons who could not attend still got the information. We also used Google Groups [10] to discuss
subjects outside the meetings, which could be read and answered by everyone. An available video conference
system was also a good technique when we needed to discuss, explain or show something for the whole group,
by using a white board for example (for an exhaustive list of communication channels used, see section 7).
Another challenge in the distributed environment is to make sure all knowledge is spread; everyone should know
what information exists and where to find it, therefore we put documents and files regarding the project on both
our Subversion server and on the Google Group to make sure we all have the same information. One other
challenge is the possibility of integration problems when the application is being developed concurrently at two
sites. This was prevented by all members using the same repository and thereby continuously integrated small
parts during the development.

The challenges which did not regard the distributed environment are connected to the project
management to ensure the final application achieves a successful verification and validation. Since the project
was performed in a short time and we needed to use unfamiliar tools, one challenge was to divide the work well
from the start in order to accomplish a good final result. We managed to use off-the-shelf software to save time,
e.g. NASA World Wind [11] (NWW) for the embedded map and an Eclipse [12] plugin called Jigloo [13] to ease
the graphical user interface (GUI) development. We also stressed the importance of a working prototype to make
sure we could handle these tools and determine that it was possible, considering the time constrains, to still
implement all the requirements we had agreed on with our customer. Another project challenge was to ensure
that the customer requirements where clearly defined to avoid any misunderstandings with our customer.
Therefore, we had continual contact with our customer to get feedback and we got the requirement document
approved early. We also appreciated opinions from the customer regarding the GUI and the user interaction in
the beginning of the process, to have time to perform any changes and improve the usability.

5. Development Process
As a result of DSD GPXCleaner being a university project, worked on by students without experience in

collaborative software development, no formal development process was used. Rather, an agile, improvised
design process has emerged from the interaction between the students themselves, and between the students
and local supervisors, incorporating elements of the waterfall model, the iterative model, and evolutionary
prototyping. This section deals with that design process in detail.

Since the project was developed as part of a structured course (see section 4) with clearly defined and
mandated milestones, parts of the waterfall model were used, especially at the early stages of development.
Several project stages along with pertaining documentation were required to be completed at set dates. These
were: the project description, the project requirement definition and the design description, along with three
written feature descriptions, in that order. This part of the development process has elements closely

 4

corresponding to the first three phases of the waterfall model (the requirements phase leading to the design
phase, leading to the implementation phase).

After the initial requirements document was compiled and approved by both local and SCORE
supervisors, the development process shifted toward the iterative model, with the rotating phases of analysis,

Figure 5.1: the DSD GPXCleaner development process

implementation, testing, evaluation and slight tweaking of requirements. The addition of the “simple mode” is
probably the most obvious example of performing additional development iterations after evaluation had shown
a need for additional functionality.

Evolutionary prototyping, defined as building robust prototypes in a structured manner, which can be
constantly and continuously refined, was used to great success in designing the data manipulator class, which
started out having only a few basic functions, and was expanded gradually as needed (the expansion was
generally triggered by the gradual completion of the GUI module, or by adopting new items into the project
requirements specification at the behest of the supervisors).

Commercial off-the-shelf software was used for the embedded map component and GPX reading and
writing functionality. Both of these components were implemented by pre-existing code from the NASA World
Wind Java code base. Although this code is licensed under the NASA Open Source Agreement [14], version 1.3,
it still falls into many definitions of the term “commercial item”.

Our development process can be said to have had three major iterations over its course. These
iterations were mandated by the three strict feature milestones imposed on the project by the local (university)
supervisors. For more information on the milestones, consult section 6, “Project Plan”.

6. Project Plan
The development of GPXCleaner was directed by a number of milestones. This section deals with the

development plan of the project in detail, and includes a list of milestones, both supervisor assigned and internal,
brief overviews of these milestones and a Gantt chart of the entire project.

The development was week-based, with the tasks for the upcoming week being discussed and assigned
at the weekly Skype meetings and the Google Group. For more information on this, see section 7. Important to
note is that the development of DSD GPXCleaner differed in certain aspects from the recommended SCORE
guidelines: the number of team members was 7 (instead of the recommended 5), and the development schedule
was shorter than suggested (3 months, versus the recommended 5).

The following is a listing of all the milestones, along with time stamps (in week numbers, where 46-52
represent weeks 46 through 52 of 2008, and 01-03 represent corresponding weeks of 2009).

Id Milestone
Description

Supervisor
assigned?

Finished week
Plan Actual

M001 Project description yes 46 46
M002 Initial requirements definition yes 47 47-03
M003 Project design yes 47 47
M004 GPX reading and writing no 49 49
M005 Expert mode GUI, basic no 49 49

 5

M006 Embedded map segment visualization no 49 49
M007 First “State of the project” presentation yes 49 49
M008 Expert mode GUI, complete no 51 51
M009 KML [15] reading and writing no 51 dropped
M010 Path reduction algorithms no 51 51
M011 Embedded map, complete no 51 51
M012 Second “State of the project” presentation yes 51 51
M013 Simple mode GUI, complete no 03 03
M014 Time parsing and editing no 03 02
M015 Wild point detection no 03 02
M016 Final “State of the project” presentation yes 03 03
M017 SCORE documentation yes 03 03
M018 Final product delivery yes 05

Table 6.1: List of project milestones

The following is a Gantt chart detailing the activity plan of the project. Boxes colored indigo signify work
being done on the items, and boxes colored green signify maintenance (refining, polishing, testing, bug-fixing).

Activity w45 w46 w47 w48 w49 w50 w51 w52 w1 w2 w3 w4 w5
Requirements definition

Team definition and managing

Design description

GPX input and output

Expert mode GUI

Simple mode GUI

Embedded map

Reduction algorithms

Time parsing

Wild point detection

Integration

Testing

Documentation

Final delivery

Table 6.2: Project Gantt chart

At the start of development, we tried listing all the risks the project was likely to face and coming up with
potential solutions. The following table enumerates the risk scenarios we thought likely and remarks on how they
were avoided or dealt with.

Possibility Risk Preventive action Remarks

High Project is late. Work overtime, define internal milestones.
Avoided by fine-tuning
requirements and working
with enthusiasm

Medium Team member has problem
with their assignment. Reorganize team members. Dealt with by reassigning

team members.

Medium Customer not satisfied with
product. Have constant communication with customer. Avoided by communication.

Medium
Problems with integrating
various project parts
together.

Use UML, make out product design and assign
team member/s to project integration.

Avoided by assigning a
team member to integration.

Low Problems with SVN. Assign a person to take care of SVN and make
backups. Never happened.

Low Team member leaves. Reorganize team members. Never happened.

Low Communication problems. Use several communication tools and have
weekly meetings.

Dealt with by having several
communication channels.

Table 6.3: Project risks

 6

7. Management Plan
DSD GPXCleaner placed great importance on long-distance collaboration and communication. Four

members of the team and one supervisor were based in Västerås, Sweden, and three members of the team and
one supervisor in Zagreb, Croatia. In order to facilitate efficient project organization and management, a number
of communication methods had to be used in parallel. This section lists all of these methods in detail.

7.1 An overview of the management process
The team was split into two sub-teams, based on the location of the team members: the “Swedish team”

(consisting of 4 students) and the “Croatian team” (consisting of 3 students, one of which was chosen to be the
project manager). Initial assignments were distributed at the first weekly Skype meeting (see section 7.3 below,
“Organizational channels of communication”), along with the position of Swedish team manager (since the
project manager was part of the “Croatian team”, a sub-manager was needed for the Swedish part of the project
team).

The responsibilities of the project manager were: coordinating all efforts of the whole team, customer
communication, communication with the university supervisors (among other things, by compiling meeting
reports and summary weekly reports), assignment of tasks (although this was in practice done on a voluntary
basis) and organizing the weekly Skype meetings.

The responsibilities of the Swedish project manager were the supervision of the members of the
Swedish side, and the gathering of weekly reports from the members of the Swedish team.

The responsibilities all individual team members, aside from their assigned implementation or
documentation tasks, were attending the weekly Skype meeting and compiling a weekly report summarizing their
activities in the past week. These reports were then compiled into one summary report and submitted to the
university supervisors.

The assignment of tasks, both initial and during the project course, was done at the weekly Skype
meetings, on a voluntary basis. During task assignment, distance wasn’t taken into consideration, so often sub-
teams in charge of a task had members of both the Croatian and Swedish sides; we found this to be in the spirit
of the university course.

7.2 Technical channels of communication

These channels were used mainly for exchange of technical information, such as various technical
documents and source code.

DSD web pages. FER hosted the communal web pages available to each DSD project. These web pages were
used for communication between local supervisors and the teams; in particular, for sharing files required by the
university-assigned milestones (mostly documents and presentations), for sharing team summary weekly
reports, and for sharing minutes of meeting of internal team meetings.

Subversion. FER made available to each DSD project a server running the Subversion software[16]. This server
was used for all collaborative code development. Subversion is a software package that enables multiple people
to collaborate on source code, by providing special source code repositories and an easy way of merging source
code files (so different team members were able to work on different parts of the same source code file at the
same time, and seamlessly merge their contributions).

7.3 Organizational channels of communication

These channels were used mainly for organizing the team, by commenting on the current project status,
assigning and reassigning members to sub-teams, assigning workload, and for communication with the local and
SCORE supervisors.

Teleconferencing. MdH in Västerås, Sweden and FER made their teleconferencing facilities available to the staff
and students of the DSD course once a week. Usually, this time was used by the university supervisors to
communicate with the students (and vice versa, in the case of a number of presentations), but on occasion it
was made available to the students to communicate amongst themselves. This form of communication was
almost exclusively verbal.

Weekly Skype meetings. Early in the development process, the team members agreed to weekly Skype
meetings in order to discuss the current project status and to more effectively and with more flexibility distribute
workload among the team members. Skype is well-known freeware software used to make telephone calls (and

 7

conference calls) on the Internet. This form of communication was practiced totally independently of the
respective universities, and was exclusively verbal.

The GPXCleaner Google Group. A special Google Group was created in order to provide a forum-like venue of
communication. The Group was used to discuss development topics in depth, as an addition to the weekly
Skype meetings, and for collaborative creation of documentation. Although this channel of communication was
created and used independently of the respective universities, local supervisors had access to it. This form of
communication was used to report when assignments were completed by sub-teams, or to request additional
time or resources as needed.

Email and instant messaging. Email and instant messaging were used for communication between individual
team members, and especially for communication between the project manager and both local and SCORE
supervisors. This form of communication was mostly used for person-to-person communication, while the other
methods were used for group communication.

8. Requirements Specification
As DSD GPXCleaner is a SCORE project, basic requirements and outlines were given by SCORE

supervisor Michal Young. But not only being a SCORE project but also a part of university course, requirements
were discussed first and mostly among team members. From a document provided by the SCORE supervisor
Michal Young, we took the required part and discussed which other options should we provide that would be
useful. After we had the first requirements specification, it was given for review to course supervisors and the
SCORE supervisor and changed where needed. As this is our first distributed course and one with “real”
customer requirements were constantly changing and were analyzed as we found new ways to implement a
feature or add a new functionality. All this was constantly discussed within the team and supervisors.

 The customer required an application for handling (reading, writing and manipulating) GPX files and
automatic reduction of GPS track points given in GPX file format. This was the main thought that led our project
and all requirements were built on it. This led to designing of two types of GUI; a simple GUI with just basic
features a user most often uses and more complex GUI with all features available in our solution.

 GPX file is made of tracks with attributes like name, time of making etc. Every track has one or more
segments with segment attributes like name etc. Segments have one or more GPS points with attributes like
latitude, longitude, elevation, time etc. One such file contains route that we recorded during one or more of our
trips.

 The application required a reduction algorithm that would reduce the number of GPS points in a chosen
segment by a specified amount and still retain the original segment shape as closely as possible, while providing
the user with a measure of precision of the reduced segment compared to the original segment. Both user
interfaces would need to feature wild point detection and removal functionality.

From the decision that we were going to create two types of interfaces, we had to agree on what
features to enable in each. Both would need to have the embedded map for viewing tracks. The embedded map
component would enable displaying of track segments overlaid onto satellite imagery. In the simple interface a
user can use the reduction algorithm (wild points are detected and deleted automatically) and he can split
segments and remove them. In the complex GUI, alongside all these features, user can also add single points,
remove them, add segments, remove segments, change point information (name, time, GPS position), and
change segment and track information, move points/segments from one segment/track to another, reorder
tracks, segments, points etc.

For agreed and given requirements we worked out use case models for all functionalities. Here we
present an example of a use case:

 8

Figure 8.1: Use case model – Track manipulation

Use case “Load GPX File”
Initiator: GPXCleaner User
Goal: Load a GPX file into memory
Main Scenario: 1. A standard file selection dialog opens
 2. The user navigates to the desired file and selects it
 3. The user clicks the “Open File” button on the dialog
 4. The newly opened tracks are added to the tracks in memory
 5. The list of loaded tracks and track segments updates

Extensions: If the user clicks the close button, the action is aborted

 If the selected file doesn’t contain well-formed GPX data, the operation is aborted and the user is notified

 The following is a listing of defined requirements, some of them were defined at the beginning, some
were added later and some were dropped. Keep in mind these are only partial requirements definition tables to
give example how they were organized, for full requirements definition see official project documentation.

Identification Requirement Group
SC System Controller
ME Math Engine
PA Parser
NWW NASA World Wind
FIO File Input/Output
SH Segment Handler

Table 10.1: Requirement Group Definitions

Source Description
Ctm Customer (Michal Young)
Sys Required as a consequence of system design (contractor’s requirement)
Ds Developers suggestion

Table 10.2: Requirement Sources

Identity Stat
us

Prio
rity Description Source

 System Controller
SC-1 I 1 Core logic, connecting all parts together Sys
 Math Engine
ME-1 I 1 Automatic point reduction Ctm
ME-1-1 I 1 Point reduction based on custom algorithm Sys
ME-1-2 I 2 Point reduction based on time point was added Ds
ME-2 I 1 Removal of wild points Ctm
 Parser
PA-1 I 1 Parse data read with FIO Ctm
PA-1-1 I 1 Read tracks Sys
PA-1-1-1 I 2 Read track names Sys
PA-1-3 I 1 Read points Sys

 9

PA-1-3-1 I 2 Read point name Sys
PA-1-3-2 I 1 Read longitude Sys
PA-1-3-3 I 1 Read latitude Sys
 NASA World Wind
NWW-1 I 1 Show tracks in embedded map, view mode Sys
NWW-1-1 I 2 Points can’t be selected Sys
NWW-1-2 I 2 Show number of points based on zoom Sys
NWW-2-3 D 2 Allow dragging of points(changing its GPS position) Ds
NWW-2-4 I 2 Allow removal of selected point Ds

NWW-2-5 A 3 Allow changing selected points GPS position by selecting the point and clicking
on new position

Ds

 Graphical User Interface
GUI-1 I 1 Open GPX file Ctm
GUI-2 I 1 Save GPX file Ctm
GUI-3 I 1 Call automatic point reduction Ctm
GUI-3-1 I 1 Select how many point it should remove Sys
GUI-7-1 I 2 Call SH to change various properties of tracks Sys
GUI-8 I 1 Edit segments Sys
GUI-9 A 3 Open simple GUI Ds
GUI-9-1 A 3 Call automatic point reduction and wild point removal Ds
 File Input/Output
FIO-1 I 1 Read GPX file content Ctm
FIO-2 I 1 Save current tracks, points, segments into GPX file Ctm
FIO-2-1 I 1 Make backup of old GPX file Ctm
FIO-3 D 3 Save current tracks, points, segments as KML file Ds
 Segment Handler
SH-1 I 1 Edit track Sys
SH-1-1 I 1 Edit track name Sys
SH-1-2 I 1 Delete track Sys
SH-1-3 I 1 Add new track Sys
SH-3 I 1 Edit point Sys
SH-3-1 I 1 Edit point coordinates Sys
SH-3-2 I 2 Edit point name Sys
SH-3-3 I 1 Delete point Sys
SH-3-4 I 1 Add new point Sys
SH-3-5 I 1 Edit point time Sys
SH-3-6 I 3 Edit additional point properties Ds
SH-3-7 I 3 Move point to another segment Ds

Table 10.3: Partial requirements definitions
 Requirement status:

I = initial (this requirement has been identified at the beginning of the project),
D = dropped (this requirement has been deleted from the requirement definitions),
H = on hold (decision to be implemented or dropped will be made later),
A = additional (this requirement was introduced during the project course).

9. Architectural Design
9.1 Conceptual design

The following conceptual design outlined in Figure 9.1.1., is useful for getting an idea about the structure
of the final product.

In the conceptual design, the main part is a SystemController. The SystemController communicates with
the GUI, which uses an I/O component and the NASA World Wind component. The I/O component is for reading
from and writing to GPX files, the NWW component is there for visualizing the GPX track on a globe. The
SystemController has three separated sets of operations which can be initiated by the user. The parser is there
for parsing GPX files. The math operations include track reducing algorithms and wild-point removing algorithms.
The SegmentHandler contains operations for combining and splitting tracks or segments.

 10

GUI

SystemController

Parser

I/O

Math

SegmentHandler

communicates

1

1

+have
1

1

uses

1 1

+have

11

+have
1

1

NWW
uses

11

Figure 9.1.1: Conceptual design

9.2 Structural design

The structural design is based upon the model-view-controller pattern. Several versions of the structural
design exist. The version that conforms to the implementation of the project is outlined below in Figure 9.2.1.

Figure 9.2.1 shows a collection of nine classes, logically grouped into the three parts of the model-view-
controller pattern. The class and method names in the structural design below conform to the actual classes in
the source code. Note however that the set of methods in the design below is incomplete. The methods are
there to give the reader a quick notion of the purpose of every class, instead of being there for some kind of
reference. Furthermore note that the UIFrame class is designed as an empty class. This class has not been
implemented as an empty class. The implemented class contains a large constructor which puts all widgets on
the main frame of the user interface, some methods that update the contents of the different lists on the main
frame and a lot of ActionListeners that react upon user input.

The model part is represented by the GPX_DataObject folder. It shows the data structure that
represents a GPX file. Such a GPX_DataObject contains zero or more tracks, which in turn contain zero or more
reducible segments. Such a reducible track segment is a wrapper for a GPX track segment. A GPX track
segment contains zero or more track points.

The view part of the structural design is the graphical user-interface, called GPX_GUI. The user can
choose between a simple GUI and an expert GUI. In the both cases, the main frame of the GUI is constructed in
the UIFrame class. This main frame contains an I/O FileHandler and the embedded map, which is called
EmbeddedMapWWJ.

 11

Figure 9.2.1: Structural design

The controller part of the design is called GPX_DataController. It contains three classes that are
responsible for manipulating the data structure. The GPXManipulator class implements many smaller methods
for manipulating tracks, segments and track points. The GPXTrackReducer implements a few methods for
reducing an entire track and finding wild points in a track. Finally, the DateParse class is there for converting
dates in the GPX format towards human readable dates and vice versa.

9.3 Behavioral design

Two sequence diagrams have been created in the design phase, conforming to the core functionality of
the system. The first sequence diagram shows the behavior of the system when a user wants to open a GPX
file. This is shown in Figure 9.3.1. The second sequence diagram, as depicted in Figure 9.3.2, shows the
behavior of the system when the user decides to reduce the currently loaded track.

 12

Figure 9.3.1: LoadGPX sequence diagram

Figure 9.3.2: TrackReduction sequence diagram

10. Implementation
The final application was realized as a desktop application written in Java [17], because all of the project

members were familiar with the Java language and because the tools for Java development (such as Eclipse,
which was used by the project) are free and widely available. The NASA World Wind Java software development
kit was used for the realization of the embedded map component and the file reader and writer components
(because using commercial off-the-shelf software (COTS) can dramatically decrease the development time
needed for these components). The graphical user interface was mostly implemented by specialized tools (such
as Jigloo, see the sections below), but parts of it were coded by hand.

 13

Project members were assigned into a number of sub-teams, each with a special development focus;
this led to highly parallelized implementation. The following table illustrates how the sub-teams were assigned at
the start of the project, and in the last week of the project.

Task Start of the project Last week of development

GUI implementation 2 members 2 members

Embedded map 1 member no members

File input/output 1 member no members

Math-related tasks 2 members 1 member

Documentation 1 member 4 members

Table 10.1: Sub-team assignments

This section deals with each of those tasks in detail, except the documentation task and sub-group.

10.1 GUI implementation

We knew from the start that we needed a GUI for users to interact with. We then stood with the choice of
making the GUI by hand coding or trying to find a code generating tool that would help us make one. Coding by
hand was quickly discarded as an option because the GUI is big, in the sense that it contains many objects
which needs to be put together in a complex way. We therefore needed an application to give us a quick
overview of what we were doing i.e. see component positions and they should be easy to edit by just dragging
them around. We chose to use a plug-in for Eclipse called Jigloo to implement the GUI. Jigloo is a graphical
editor for GUI implementation; we chose it as it is a good tool to get overview how the GUI was going to look for
the user while we were developing it.

The main focus in the development of the GUI was to have a reasonably big window for the map to be
shown in so the user wouldn’t find it too hard to interact with the map. Another concern was that we needed to
implement the buttons to cover the required functionality. To do so, the different buttons were grouped according
to what they are intended to edit, thus the edit track buttons were grouped together and similar solution had to
be done for the rest of the buttons so the user could access the functions quickly when editing one part. We
wanted to have, from a user point of view, the map in the middle of our GUI so we put the point edit buttons to
the left side of the GUI; this is so that the map would be the main focus and the buttons always would be visible
so the user doesn’t need to shift the eyes so much in the while working with the program. Another thing to have
in mind is that we wanted to let the user to have as much information that would be relevant for each section so
a user could get a quick overview of the editing.

Figure 10.1.1: Milestone M005 mockup

Figure 10.1.2: Milestone M008 GUI

Initially, we made a mockup to present and complete milestone M005 (see table 6.1: “List of project
milestones”). After some customer feedback on what to improve and after adding the last missing buttons in
each section, we presented a more complete GUI at the completion of milestone M008.
As this version proved to be too complex for a new user we decided to make a simplified version so that a user
could do some basic editing without getting intimidated by the complexity of the original GUI. We sat down and
designed a simplified version which, after being reviewed by our customer, we implemented into the application.
 During GUI development we ran into problems when we needed to edit components directly in the code.
As the graphical view of the GUI shown by the plug-in was rendered directly as code were added, it could make
the program unresponsive as it started rendering the view before the written line was finished, thus trying to
render a view with errors in it. Another thing we later noticed is how the tool was unable to handle component

 14

adding or removal by hand e.g. removing a button could break the code structure when the code was reworked
by the plug-in. We dealt with this by creating a skeleton GUI in Jigloo and finishing the implementation by hand.

10.2 Embedded map

The embedded map component was implemented by modifying pre-existing, COTS software. This
section contains descriptions of the software used, changes made to it, and challenges faced during
development.

Figure 10.2.1: World Wind Tracks

 NASA World Wind is a free, open source virtual globe application developed by NASA and the open
source community for use on personal computers running Microsoft Windows, first released in 2004. The
program overlays NASA and USGS satellite imagery, aerial photography, topographic maps and publicly
available GIS data on 3D models of the Earth and other planets. The program is written in C# and licensed
under the NASA Open Source Agreement, ver. 1.3. In 2007, a new version of World Wind had been developed
in Java, referred to as World Wind Java. This new version has an API-centric architecture with functionalities off-
loaded to modular components, making World Wind itself a plug-in. These features made World Wind Java ideal
for adaptation and use in the DSD GPXCleaner project.

A full description of World Wind’s implementation is well beyond the scope of this document. Therefore,
we will limit our focus to parts of World Wind that were specially modified for the needs of GPXCleaner.

World Wind uses the concept of layers to present the user with information and controls in its window.
These layers can include, but are not limited to, components such an on-screen compass, a miniature world
map, satellite and aerial imagery overlaid onto the virtual globe, and icons and geometric shapes rendered on
the surface of the globe. One of these layers, called TrackMarkerLayer, is shipped with the World Wind Java
package, as part of an example application called Tracks (these example applications are supposed to
demonstrate the capabilities of World Wind to novice software developers). This layer has the ability to display
GPX tracks as icons rendered on the surface for the virtual globe, and the ability to programmatically vary the
number, density and size of the icons based on the level of camera zoom (in a nutshell: the more the user
zooms in, the track is shown in more detail). This layer was the base for the two layers GPXCleaner uses to
render and allow interaction with GPX tracks; these layers are called SimpleMarkerLayer and
ComplexMarkerLayer.

SimpleMarkerLayer is a layer heavily based on World Wind Java’s TrackMarkerLayer. Features shared
with TrackMarkerLayer are: programmatic changes to the size, number and density of icons rendered based on
the level of camera zoom, and the ability to display both tracks and segments (this is relevant since the other
custom layer, ComplexMarkerLayer, can only render segments). Improvements made over the original
TrackMarkerLayer are: introduction of the selection concept (if a user selects a point in the graphical user
interface, SimpleMarkerLayer will never skip rendering the selected point and will render it in a distinct color),
awareness of reduced segments (SimpleMarkerLayer will not consider points that have been reduced away, if
there are any), optional rendering of lines connecting neighboring points and the ability to render different
segments of a track in rotating colors (the first segment is rendered in white, the second in green, etc.). This
layer is the basis of GPXCleaner’s preview functionality; it can be used to display whole tracks (which may
contain a very large mount of points) without making the whole application unresponsive due to a heavy burden
being placed upon the CPU.

ComplexMarkerLayer is a custom built layer based on World Wind Java’s TrackMarkerLayer. The main
differences between the two are: ComplexMarkerLayer displays each and every point of a given segment, can
only render individual segments, is aware of the current point selection (will render selected points differently),

 15

can optionally render lines connecting neighboring points, and is aware of segments that have been reduced.
This layer is also “pickable” (in the context of World Wind Java, this means the embedded map component will
generate events in response to an element of this layer being clicked on with a mouse). Since this layer doesn’t
skip any points while rendering and since its icons can be selected with the mouse, this layer is the base of
precision segment editing functionality in GPXCleaner. Due to a potentially large number of icons rendered, and
due to additional CPU-time being necessary to detect its icons being clicked on, this layer places a greater strain
on the CPU.

Figure 10.2.2: a side-by-side comparison of SimpleMarkerLayer and ComplexMarkerLayer

SimpleMarkerLayer and ComplexMarkerLayer were built as complementing layers, meant to be used together.
For example, selecting a segment in GPXCleaner’s “simple mode” will render the track containing the chosen
segment using SimpleMarkerLayer (except the selected segment) and the selected segment using
ComplexMarkerLayer. This arrangement is thought to be a good compromise between giving the user as much
useful information as possible while keeping the application responsive in normal usage conditions. The same
effect can be achieved in “expert mode” as well, but there it requires explicit activation.

Since World Wind Java provided basic, but easily upgradeable components for rendering GPX data on
the virtual globe, the biggest challenges faced during the implementation of the embedded map component
were: understanding the existing architecture, modifying it for GPXCleaner’s specific needs, and further
optimizing it. As the embedded map component was judged to be mature, the member assigned to it was
reassigned to work on general integration.

10.3 File input/output

One of the main requirements for GPXCleaner was the reading and writing of GPX files. GPX is a GPS
navigation device data format based on XML [18], which is device independent. It is used for points of interest,
tracks, and route points. Except for GPX, there is one more format commonly in use for presenting geographical
data – Keyhole Markup Language (KML) which is a language schema for expressing geographic annotation and
visualization on two-dimensional maps and three-dimensional Earth browsers.

After consulting the project supervisors during the initial requirements gathering phase, it was decided to
support only a subset of the GPX standard and if time permits, a subset of the KML standard. The elements and
attributes chosen for support were the ones most likely to be used in commercial GPS devices to record tracks.

Due to the short development schedule and time constraints, KML support was dropped near the end of
the project.

The GPX input and output functionality was achieved by using an existing part of the NASA World Wind
Java package (in particular: the GPXReader and GPXWriter classes) and subsequently modifying them to
support the attributes and elements important to GPXCleaner. The usage of COTS software for this task has
significantly cut development time and made it possible to reassign the member in charge of file input/output to
help with GUI development.

The list that follows illustrates which parts of the GPX standard are supported by GPXCleaner and which
aren’t. The supported elements and attributes are listed in bold, and the unsupported ones are stricken-through.
Unsupported elements and attributes are simply ignored by GPXCleaner.

 16

Element name Description of
element

Supported
attributes

Unsupported
attributes

Supported
elements

Unsupported
elements

gpx root element of
a GPX file

- version, creator trk metadata, wpt, rte,
extensions

trk a GPX track,
part of gpx

- - name, trkseg cmt, desc, src,
link, number, type,
extensions

trkseg a segment of a
GPX track

- - trkpt extensions

trkpt a point on the
surface of the
Earth, part of
trkseg

lat, lon - ele, time, name magvar,
geoidheight, cmt,
desc, src, link,
sym, type

Table 10.3.1: GPX elements and attributes

GPXCleaner also supports creating back-up copies of files about to be overwritten by its output. If
creating a back-up copy is allowed in the directory containing the file to be overwritten (by file system
permissions, available disk space, etc.), the original file is copied with a changed name (the date and time of the
back-up is appended to the file name).

10.4 Math-related tasks

The path reduction algorithm represents the core functionality of the GPXCleaner system. This algorithm
does not work in a straightforward way, therefore some explanation is needed. The path reduction algorithm is
designed as a combination of two different approaches.

10.4.1 First approach

The first approach towards a path reduction algorithm resulted in a quite straightforward way of reducing
paths. It works as follows. For every point in the track except the start point and end point, a distance d is
calculated. This d is the shortest distance between the point and the line through both direct neighbors of the
point. This is outlined in Figure 10.4.1. Note that this d can be calculated using basic mathematics.

Figure 10.4.1: Calculating d

After d has been calculated for every point (except the start point and end point), the points with the
smallest d's are removed from the track. This could either be a number of points defined by the user or it could
be all points with a d below some threshold. This approach results in a reduced track that is quite similar to the
original track. The approach is good for removing points that are (almost) on one line with their direct neighbors.

10.4.2 Second approach

The first approach algorithm bases the decision to keep or remove a point on its position relative to its
direct neighbors. The second approach is an improvement in the sense that it decides to remove a point after
comparing its position to the most important points in the entire track.

Figure 10.4.2: Startpoint and endpoint are marked vital, third vital

point found

Figure 10.4.3: Fourth vital point found

 17

In the second approach, a number of points can be marked 'vital'. The last action of the algorithm is to
remove all non-vital points from the track. In the beginning, no points are marked vital, except for the start point
and the end point of the track. While the maximum number of vital points has not been reached, the algorithm
marks a non-vital point as being vital, exactly one for a repetition of the loop. The point being marked vital is the
point for which d is maximal, where d is the shortest distance between the point and the line through both vital
neighbors of the point. The behavior of the second approach is outlined in Figures 10.4.2 and 10.4.3.

10.4.3 Final approach

The final algorithm is a combination of the two approaches. The algorithm starts by finding all points that
are (almost) on one line with both direct neighbors using the first approach. These points are marked 'least
important'. The remaining points are ranked in order of importance; the start point and end point are of highest
importance, the third vital point is next, etc. After this calculation is done, the path reduction remains a simple
operation on the list of track points.

10.4.4 Wild point detection

A GPX track can contain “wild points”; points for which the position has been measured incorrectly. A
fairly simple algorithm has been implemented for the detection of wild points. This algorithm requires all points to
contain a position and a time attribute. Using these attributes, one can compute the average traveling speed
between any two points. The algorithm computes the average traveling speed between any two consecutive
points. If the average speed exceeds some user-defined top speed, the destination point is considered to be a
wild point. The algorithm returns a vector of wild points. The top speed is not a fixed value, because for example
a hiking user would set a different top speed from a biking user.

10.4.5 Converting from coordinates to distances

The algorithm as presented above depends on the distance between any two points. The input given to
the application consists of coordinates. The conversion from coordinates to distances is not a trivial one,
because the earth is a sphere. The conversion function in the implementation is a standard function taken from
the Internet.

11. Verification and Validation
During the project development, three types of testing were performed. This section describes all three

types and when they were performed.

The first type of testing was performed by the individual code developers immediately after implementing
a feature. This type of testing was component and integration based. The developers were expected to test their
features against all boundary cases they could think of and the exact testing methods were left to their
discretion. These tests exposed the most bugs.

The second type of testing was performed before milestones M012 and M016 (for more information see
section 6), because those milestones involved live demonstrations of the application. For every demonstration, a
common usage scenario involving newly implemented features of DSD GPXCleaner was created and thoroughly
manually tested before the demonstration itself. This testing exposed a number of bugs at the system and
integration levels.

The third and most significant type of testing was the final acceptance testing performed on the
application, at the system and integration level. Acceptance testing is a black-box testing technique which aims
to verify that the final product meets the specified requirements. Our approach included manual requirements-
based functional testing, which aimed to verify that each functional area of the system behaves correctly from
the user and business perspective according to the specified requirements, and stress testing, which was
performed to measure and ensure a certain level of effectiveness under unfavorable conditions (this test was
carried out by overloading the map handler with huge input data to measure its availability under this condition).
This section contains a brief overview of our project acceptance test plan, for a complete overview testing see
the “DSD GPXCleaner Acceptance Testing Plan” document included in the project documentation [9].

First, we created the functional requirements definitions, a few of which are shown below.

 18

ID Description

TR1 Load tracks from a GPX file

TR2 Save tracks into a GPX file

TR12 Reduce points of a segment

TR23 Switch from Simple mode to Expert mode and vice versa

Table 11.1: Partial functional requirements definition

 Then, we defined a number of test cases to test the functional requirements described above.

ID Description

TC1 Perform the loading GPX file operation by using an empty file. The tool shouldn’t raise any error; just not open the
empty file. It tests the requirement TR1.

TC2 Perform the loading GPX file operation by using a badly formatted file. The tool shouldn’t open the wrong file and
advice the user about the failure. It tests the requirement TR1.

TC3 Perform the loading GPX file operation by using a correctly formatted file. The tool should open the file and visualize
the parsed information. It tests the requirement TR1.

TC37 Reducing points of several selected segments. The tools should not reduce anything since it is not possible to reduce
several segments at the same time. It tests the requirement TR12.

TC61

Switching from simple mode to expert mode. The user in simple mode clicks on the “Window->Switch to Expert mode”
and the tool should delete every item from the main frame of the GUI, and repopulate it with the simple GUI ones. The
lists will maintain the info from the previous mode and the embedded map should keep its state. It tests the
requirement TR23.

Table 11.2: Partial test cases definition

Then, a responsibility matrix was created, assigning individual tests and test cases to particular testers.
The tests were carried out and the detected failures documented and corrected.

At the time of writing of this document, the testing hasn’t been fully completed. The following table
describes the results of four latest failed test cases, the cause of the failure, and the steps taken to correct the
problems.

ID Test case description Description of the encountered
problem Description of the solution

TC2 Perform the loading GPX file operation by
using a wrong formatted file. The tool
shouldn’t open the wrong file and advice the
user about the failure. It tests the
requirement TR1.

The test case was failed: a file
containing a track point with the latitude
attribute set outside the accepted range
was not rejected.

The subroutines reading attributes
and elements with limited ranges
were modified to throw exceptions in
case of an illegal value and the GUI
module was modified to catch the
exception and notify the user.

TC5 Perform the saving GPX file operation when
the user does not have the right to write. The
tool should not perform the operation since
the user does not have the rights for the
requested operation. It tests the TR2.

The test case was passed, but the error
message was unclear (and contained
debugging information).

The error dialog was modified to
present the user with a clearer error
message.

TC9 Split a selected track at a selected segment.
The tool should create a new track and put
into it the selected segment; lists are
updated. It tests the requirement TR4

The test case was passed, but the
embedded map did not immediately
refresh after the action, to reflect the
new state.

The track splitting subroutines were
modified to refresh the map
immediately.

 19

TC17 Move up a selected track. The tool should
move up the selected track in the list of one
position. It tests the requirement TR6

The test case was passed, but the
selected track was dropped out of
preview mode, and the selected
segment out of editing mode (if
selected).

The subroutine in question was
changed to reapply the preview and
editing mode settings if they were
previously set.

Table 11.3: Example test case verification results

During tests that require properly formatted GPX data, three files were used as input data.

Filename Description

tuolumne.gpx A file containing 1 track, 1 segment and 5249 points. This file was obtained from the
World Wind package. Contains data from a GPS device.

Track-2007-10-13.gpx A file containing 1 track, 4 segments and 2282 points. Obtained from the customer.
Contains data from a GPS device.

test1.gpx A file containing 1 track, 1 segment and 6 points. Created with the DSD GPXCleaner
application.

Table 11.4: Partial list of test files

12. Outcomes and Lessons learned
The requirement of the project was to build a program that would allow reading data recorded by GPS

devices in GPX files and making it suitable for use with online services by reducing the number of recorded
points. This key requirement was fulfilled.

 The program not only features the main requirement but also a lot of other features. We have embedded
the NASA World Wind map for visualization of user tracks and their easy manipulation; the number of points
displayed on the map is based on the current zoom on the map. With both simple and complex interface modes,
a user can either access only the most commonly used features or use all the features the program has. DSD
GPXCleaner can detect wild points, reduce them with or without user supervision, reduce the number or GPS
points by user given amount and calculate the deviation from original track. With DSD GPXCleaner it is possible
to add tracks, remove them, join them together, split them, arrange their order in GPX files, and do the same
with segments inside of every track. It’s possible to add and remove points, move them on the map, change the
time associated with them, and rename them. DSD GPXCleaner also has an automatic backup feature. We use
only a part of the GPX standard that is most important and most used with internet services; a future
development implementing the support for all features could be made. Also the KML standard for GPS tracks is
becoming more popular so support for it could be a good improvement to the application.

 With the program, we have also written complex documentation describing all the features, how they
work, how they were built and what was the development process. All of this can be found on the web page
hosted by the DSD course: http://www.fer.hr/rasip/dsd/projects/gpxcleaner.

 The road to here wasn't an easy one. For all of us this was the first distributed project with members
located in different counties with different cultures without the possibility to meet in person. The distribution part
was the largest problem we faced. We had to arrange teleconference meetings; we used Skype for weekly
meetings and used a Google Group and email for a lot of discussion about the project and problems. A
Subversion server was used for code management between all the members.

 As this wasn't only a SCORE project but also a part of a university course, “Distributed Software
Development”, all members of the team had DSD supervisors to whom we had to provide weekly reports,
periodically present the state of the project and meet milestones; all of this was new to us.

 After all the new things came the project. We had basic requirements given to us by our customer Michal
Young. With them we proceeded to work out what functionalities would our program offer, and make
documentation on how they would be implemented. But those weren't final either, the whole time the project ran,
we had communication going on relation team–supervisors and team–customer to be sure that our project is
doing well and that the customer is satisfied.

 20

 For the program itself, we agreed to build it in Java as all of us are familiar with the Java programming
language and we found excellent open source software that we could use with our application. During
development we faced several challenges we expect to find in the real world, such as shifting requirements
(most notably, the addition of the “simple mode”), difficult problems with deadlines (such as the path reduction
algorithms) and the need to perform thorough testing both during and after the application implementation.

Besides the concrete outcome – a GPXCleaner application, we believe that the “non-visible” outcomes
of this project are even more important; this project resulted in a lot of valuable experience on how to work in a
team and how to cope with distance with members that are not always around to help you. We managed to
arrange the distributed project and communicate over long distances. Furthermore, this gave us “real world”
experience as we learned how to communicate with supervisors and a customer, work out problems and come
to solutions together.

 For final notice it was a great new experience that will benefit us greatly in future and that no one should
miss.

13. Summary
The DSD GPXCleaner application provides several features to allow users to easily manage their GPX

data files received from GPS units. The application can be used to handle personal excursion recordings and to
set up GPX data files before sharing them with others. DSD GPXCleaner was developed for our customer
Michal Young, with whom the application requirements was decided and defined during the project process. The
final product fulfills all customer requirements and also provides adiditional features such as a simple view mode
for the most frequently used functionality.

The DSD project was run in eleven weeks by a distributed project team consisting of seven team
members from five different countries positioned at two separate sites; Croatia and Sweden. The project was
part of the university course, DSD, and the work load for each person was therefore defined as 20 hours per
week maximum. The project resulted not only in a successful application that satisfied our customer, but also in
the achieved knowledge in distributed development and the valuable experiences from the distributed
environment considering culture differences, importance of communication and the new techniques we needed
to use.

We believe DSD GPXCleaner has potential to become widely used software due to the increasing use of
GPS units in outdoor activities and the need for handling the recorded files. Our application is an excellent
solution since it is both easy to use and a strong tool for manipulating these records.

14. References

[1] Global Positioning System [online] http://www.gps.gov/ [Accessed 14 Jan 2009]
[2] Distributed Software Development 2008, CDT402 [online] http://www.idt.mdh.se/kurser/cd5610/2008/ and

http://www.fer.hr/rasip/dsd [Accessed 13 Jan 2009].
[3] Mälardalen University [online] http://www.mdh.se/ [Accessed 13 Jan 2009]
[4] Faculty of Electrical Engineering and Computing, University of Zagreb [online] http://www.fer.hr/en [Accessed 13

Jan 2009]
[5] Skype [online] http://www.skype.com/ [Accessed 13 Jan 2009]
[6] Unified Modeling Language™ [online] http://www.uml.org/ [Accessed 14 Jan 2009]
[7] GPX (the GPS Exchange Format) [online] http://www.topografix.com/gpx.asp [Accessed 14 Jan 2009]
[8] SCORE Software Engineering Contest [online] http://score.elet.polimi.it/ [Accessed 14 Jan 2009]
[9] DSD GPXCleaner documentation [online] http://www.fer.hr/rasip/dsd/projects/gpxcleaner [Accessed 14 Jan 2009]
[10] Google Groups [online] http://groups.google.com/ [Accessed 14 Jan 2009]
[11] NASA World Wind [online] http://worldwind.arc.nasa.gov/index.html [Accessed 13 Jan 2009]
[12] Eclipse [online] http://www.eclipse.org/ [Accessed 13 Jan 2009]
[13] Jigloo [online] http://www.cloudgarden.com/jigloo/ [Accessed 13 Jan 2009]
[14] NASA Open Source Agreement [online] http://opensource.arc.nasa.gov/page/nosa-software-agreement/ [Accessed

13 Jan 2009]
[15] KML [online] http://code.google.com/apis/kml/ [Accessed 14 Jan 2009]
[16] Subversion [online] http://subversion.tigris.org/ [Accessed 14 Jan 2009]
[17] Java [online] http://www.java.com/ [Accessed 14 Jan 2009]
[18] Extensible Markup Language (XML) [online] http://www.w3.org/XML/ [Accessed 14 Jan 2009]

