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Abstract

In the context of real time and safety-critical systems the usage of formal methods is of paramount  
importance. The artificial pacemaker is a perfect example of a system whose behavior needs to be  
well and formally specified in order not to lead to possible mistakes. This paper shows how an  
extensive usage of formal methods written in the TRIO+ formal language can be applied to the  
specification of three different functioning modes of the pacemaker (AAT, VVI and DDD), and how 
the stated requirements can be validated through the use of the SAT checker called Zot and the  
specification  and  verification  system  called  TVS  (TRIO/PVS).  Finally,  we  developed  a  Java  
software  prototype  that  simulates  the  behavior  of  the  pacemaker  as  described  by  our  formal  
specification of the requirements.

1. Introduction 

Boston Scientific has made available a natural language requirements document [3] for a 
previous  generation  pacemaker.  This  document  has  become  the  basis  for  a  Grand 
Challenge  proposed  by  McMaster  University  Software  Quality  Research  Laboratory 
(Canada) [1], and is ideal for realistic student projects . 

The Pacemaker developed in this project is a typical example of

● Safety-critical  system because  its  failure  or  malfunction  can  compromise  the 
health of the patient.

● Real-time  system because  its  correct  behavior  strictly  depends  on  timing 
constraints.

Formal models have a valuable role to play in validating requirements and designs for real-
time safety-critical systems in early development stages. Rapid feedback from the analysis 
of  such  models  has  the  potential  to  reduce  the  risk  of  expensive  re-working  as  a 
consequence of the late-stage detection of defects and the generation of proofs that the 
code meets the requirements improves the software quality.

However, models that incorporate the description of functionality alongside timing behavior 
are themselves potentially  complex.  Moving too rapidly  to  such a complex model  can 
increase modeling and design costs in the long run. In order to gain full value from formal 
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modeling and analysis, a systematic approach to constructing and validating models is 
required. This work is focused on the development of an industrial application with the use 
of formal modeling techniques that satisfy the requirements discussed above . 

The approach proposed is based on modeling the system specification using the TRIO 
language [5] and exploiting its powerful tools to perform analyses of the system. 
Using the resulting formal specifications, a simulator in Java was implemented in order to 
demonstrate that the  final result completely reflects the expected behavior of the system.

2. Goal

The goal of the project is to build a simple but complete implementation of a pacemaker, 
targeting a subset of its functioning modes. 
The choice to implement only these modes is due to the fact that each of them causes a 
totally different behavior of the heart that corresponds to different formal modeling and 
analysis of the system.
However, this prototype, is designed  as a component that can be easily integrated with 
others in order to achieve a pacemaker that is able to perform many functionalities.

This software engineering project is developed following the well known Waterfall Software 
life-cycle :

● Requirements 
● Design
● Implementation
● Testing

The approach proposed for the requirements consists of two further steps:

1) Defining a global specification of the system in the TRIO language (modeling)
2) Performing an iterative analytic process in which every TRIO axiom is added to the final 
specification only if:

● The specification with this new axiom is satisfiable (ZOT SAT checker).
● The new axiom is crucial for the PVS proof of some properties (no axiom 

redundancy).
ZOT was used to check the satisfiability of the overall axiomatization, PVS to prove the 
system properties.

For the purpose of this project we mainly focus on the requirements step for three main 
reasons:

● The final specification written in TRIO+ defines the components of the system and 
the interaction among them. So the TRIO+ specification corresponds to the design 
component view of the system.

● Each of this component is a set of axioms describing its behavior. For this reason 
the  implementation step  corresponds  to  the  translation  of  these  axioms,  from 
TRIO language into Java.

● The  set  of  axioms  produced,  beside  its  correctness,  implies  some  extremely 
important  properties:  Utility  and  Security.  After  being  formally  proved,  verifying 
these properties in the Java  simulator is the goal of the testing step.
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3. Background

3.1 Heart

The heart is a muscular organ responsible for pumping blood through the blood vessels by 
repeated,  rhythmic  contractions.  The  heart  has  its  own internal  electrical  system that 
controls the speed and rhythm of the heartbeat. With each heartbeat, an electrical signal 
spreads from the top of the heart to the bottom. As it travels, the electrical signal causes 
the heart to contract in an organized manner and pump blood. 
A heartbeat is a single cycle in which the heart’s chambers relax and contract to pump 
blood. This cycle includes the opening and closing of the two inlet and outlet valves of the 
right and left ventricles of the heart.

Each heartbeat has two basic parts: diastole, and atrial and ventricular systole. During 
diastole, the atria and ventricles of the heart relax and begin to fill with blood. At the end of 
diastole, the heart’s atria contract (atrial systole), pumping blood into the ventricles, and 
then begin to  relax.  The heart’s  ventricles then contract  (ventricular  systole),  pumping 
blood out of the heart.

Each beat of the heart is set in motion by an electrical signal from within the heart muscle. 
In a normal, healthy heart, each beat begins with a signal from the SA node. This is why 
the SA node is sometimes called the heart’s natural pacemaker. The pulse, or heart rate, 
is the number of signals the SA node produces per minute.

3.2 Pacemaker

A pacemaker  [8,9,10]  is  a  small  device  that's  placed  under  the  skin  of  the  chest  or 
abdomen to help control abnormal heart rhythms. This device uses electrical pulses to 
prompt the heart to beat at a normal rate. Pacemakers are used to treat heart rhythms that 
are too slow,  fast,  or  irregular.  These abnormal  heart  rhythms are called arrhythmias. 
Pacemakers can relieve some symptoms related to arrhythmia, such as fatigue (tiredness) 
and fainting. A pacemaker can help a person who has an abnormal heart rhythm resume a 
more active lifestyle.  Depending on which arrhythmias is present,  modern pacemakers 
provides different functioning modes that perform different kinds of therapeutic behavior. In 
order to distinguish between different functioning modes, a code mechanism has been 
introduced. The code has evolved over several years to accommodate changes in pacing 
systems and there have been recommendations for up to a five-position code with multiple 
letters.  From  a  practical  point  of  view,  the  four-position  code  described  in  Table  1 
represents general usage.

Position 1 refers to the chamber(s) being paced. V stands for ventricle, A stands for 
atrium, and D stands for dual (atrium and ventricle). There is really no O in this setting (an 
older  implantable  cardioverter  defibrillator  that  did  not  have  pacing  backup  could  be 
designated O, but this is of historic interest only). Manufacturers will often designate S for 
single. This means it can be used to pace either the atrium or the ventricle. They are 
simply describing it more accurately and not designating it as one or the other since it can 
be used for either. 

Position 2 refers to the chamber(s) being sensed. Again, V is for ventricle, A is for 
atrium, and D is for dual (atrium and ventricle). Again, the designation of S is often used by 
the manufacturer in a generic manner because of its potential application for either atrial or 
ventricular placement. In position 2, the designation O refers to absent sensing (and thus 
refers to fixed, asynchronous pacing). When a magnet is placed over most pacemakers, 
the sensing is disabled; for instance, a VVI pacemaker would become VOO.

Position 3 refers to  the device's  response to  sensing.  I  represents  the inhibited 
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mode, meaning that when the pacemaker senses an event, it will be inhibit pacing for that 
cycle; this is the most common form of sensing. T indicates a triggered response. When 
the pacemaker senses an event, it will trigger the device to deliver a pacing stimulus. In 
single-chamber situations, the sensed event and triggered impulse occur within the same 
chamber.  When  dual-chamber  terminology  is  introduced,  many  new  readers  to 
pacemakers are confused by the third D. The third D refers to the ability to trigger a spike 
or to inhibit. In particular, an atrium event allows a triggered ventricular response in the 
ventricle.  The main  goal  of  this  mode is  to  achieve what  is  called  the  AV synchrony 
between the two chambers. For  example in  VVI functioning mode there is  no relation 
between atrium and ventricle events, meaning that when we provide a ventricular pulse 
this  may occur  at  an  arbitrary  distance from an atrium event  because we are  simply 
ignoring what is happening in the other chamber. DDD mode instead uses atrium events to 
trigger ventricular pulses  after a fixed AV delay without sensing any ventricular event.

Position 4 simply has an R added if the patient has rate modulation, in which a 
sensor is used to modify the heart rate of the pacemaker based on the patient's activity or 
metabolic need.

This is the functioning mode table from the Boston Scientific pacemaker specification. In 
this project we will concentrate on the VVI, DDD and AAT functioning modes, leaving rate 
modulation to future improvements.

3.3 VVI

VVI mode is a single-chamber pacing mode. This means that this activity is concentrated 
only on one chamber of the heart, in this case the ventricle chamber. VVI pacing is most 
commonly used for patients with chronic atrial fibrillation and a slow ventricular response. 
Atrial  fibrillation is  a  cardiac arrhythmia (abnormal  heart  rhythm)  that  involves the two 
upper  chambers  (atria)  of  the  heart.  A  conclusive  indication  of  atrial  fibrillation  is  the 
absence of atrial events on an electrocardiogram (ECG). Pacing or sensing the atrium in 
these patients is meaningless because atrial events do not occur. VVI pacing could be 
used in a patient with such sinus syndrome as “backup pacing”, but during those times of 
pacing, AV synchrony would not be maintained. If the episodes of asystole are very rare 
and/or the patient is extremely inactive, this may not present a significant clinical problem. 
The addition of rate modulation (VVIR) is indicated when sinus node function is abnormal. 
Chronotropic incompetence is a common form of abnormal sinus node function in which 
appropriate increases in sinus rate do not occur. As a result the heart does not increase its 
own beat rate when it is needed by the patient.

3.4 AAT

The  AAT mode  acts  only  on  the  atrial  chamber  and  its  response  to  sensing  is  of  a 
triggered kind. Its behavior is defined in Boston Scientific Specification [3] as: 
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“when a pulse is sensed in the atrium, a pulse is immediately triggered to the atrium itself; 
the pacemaker delivers stimuli to the atrium at a fixed rate in the absence of sensed atrial 
activity”. AAT is usually set as the pacemaker functioning mode when the patient has one 
of the following cardiac problems:
– Too weak atrial pulses: the atrial beats are too weak in terms of amplitude and/or width. 

The purpose of the pacemaker is to adjust both parameters of the beat, in order to 
resume an admissible state of the beat.

– Bradycardia: the patient has too few heart-beats per minute, or, in other words, he/she 
has a too slow heart rate. In particular the problem resides in the atrium, which may not 
pulse naturally  and it  needs an artificial  help.  The purpose of the pacemaker is to 
increase the heart rate in order to return the heart to an admissible and safe state.

Therefore the main challenges for a good implementation of this kind of pacemaker are: 
keeping the heart rate over the Lower Rate Limit(LRL) threshold while strengthening width 
and amplitude of pulses (Utility goal) and, in the meanwhile, maintaining a non-invasive 
behavior in the case the natural heart beating is still admissible (Safety goal).
Apart from the main parameters of the heart beat mentioned above, the main parameters 
the AAT mode needs to perform its actions are:
– Lower and Upper rate limits(LRL, URL): they are the lower and upper bounds for the 

heart rate in order to have an healthy and safe beating;
– Atrial Refractory Period (ARP): time interval following an atrial event during which time 

atrial events shall not inhibit nor trigger pacing;
– Post  Ventricular  Atrial  Refractory  Period:  time interval  following  a  ventricular  event 

when an atrial cardiac event shall not inhibit an atrial  pace nor trigger a ventricular 
pace.

3.5 DDD

DDD is another mode of the pulse generator (PG) treated in this project.

The acronym stands for:

D: both chambers paced.
D: both chambers sensed.
D: Tracked Response mode. 
 
In the Tracked Response mode, an atrial sense shall cause a tracked ventricular pace 
after a programmed AV delay, unless a ventricular sense was detected beforehand. 

DDD pacing is a form of dual-chambered pacing in which the atria and the ventricles are 
paced. In DDD pacing the atrium and the ventricle are sensed and paced or inhibited, 
depending on the native cardiac activity sensed. Other forms of dual-chambered pacing 
are  available,  such  as  DVI  and  VDD,  but  DDD  is  the  most  common.  The  principle 
advantage of dual-chambered pacing is that it preserves AV synchrony. Because of this 
advantage, dual-chambered pacing is increasingly common.

In DDD pacing, if the pacemaker does not sense any native atrial activity after a preset 
interval, it generates an atrial stimulus. An atrial stimulus, whether native or paced, initiates 
a  period  known  as  the  AV  interval.  During  the  AV  interval  the  atrial  channel  of  the 
pacemaker is inactive, or refractory. At the end of the present AV interval, if no native 
ventricular  activity  is  sensed  by  the  ventricular  channel,  the  pacemaker  generates  a 
ventricular stimulus. Following the AV interval, the atrial channel remains refractory during 
a short,  post-ventricular  atrial  refractory period (PVARP) so as to  prevent  sensing the 
ventricular stimulus or resulting retrograde P waves as native atrial activity.
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3.6 Electrocardiogram

Electrocardiogram (ECG) is  considered in  this  project  as the main instrument used to 
show the natural patient heart rate (the input to the pacemaker) and the paced heart rate 
(the  output).  As  the  heart  undergoes  depolarization  and  repolarization,  the  electrical 
currents that are generated spread not only within the heart, but also throughout the body. 
This electrical activity generated by the heart can be measured by an array of electrodes 
placed on the body surface. The recorded tracing is called an electrocardiogram (ECG, or 
EKG). A "typical" ECG tracing is shown here in figure 2.

Artificial pacemakers use two electrical leads, placed in the atrium and ventricle chambers, 
to  detect  these  signals.  The  different  waves  of  the  ECG  represent  the  sequence  of 
depolarization and repolarization of the atria and ventricles. Every different wave can be 
interpreted by the artificial pacemaker as an atrium event, or a ventricular event. The ECG 
is recorded at a speed of 25 mm/sec, and the voltages are calibrated so that 1 mV = 10 
mm in the vertical direction. Therefore, each small 1-mm square represents 0.04 sec (40 
msec) in time and 0.1 mV in voltage. Because the recording speed is standardized, one 
can calculate the heart rate from the intervals between different waves.

The P wave represents the wave of depolarization that spreads from the  SA node 
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throughout  the atria,  and is  usually  0.08 to  0.1 seconds (80-100 ms)  in  duration.  The 
period of time from the onset of the P wave to the beginning of the QRS complex is termed 
the  P-R interval,  which  normally  ranges from 0.12 to  0.20  seconds in  duration.   This 
interval represents the time between the onset of atrial depolarization and the onset of 
ventricular depolarization.  If the P-R interval is >0.2 sec, there is an AV conduction block, 
which is also termed a first-degree heart block if the impulse is still able to be conducted 
into the ventricles.

The QRS complex represents ventricular  depolarization.  Ventricular  rate  can be 
calculated by determining the time interval between QRS complexes. The duration of the 
QRS complex is normally 0.06 to 0.1 seconds. The shape of the QRS complex in the 
above  figure  is  idealized.  In  fact,  the  shape  changes  depending  on  which  recording 
electrodes are being used. The shape will also change when there is abnormal conduction 
of electrical impulses within the ventricles. 

The T wave represents  ventricular repolarization and is longer in duration than 
depolarization  (i.e.,  conduction  of  the  repolarization  wave  is  slower  than  the  wave  of 
depolarization). T waves are a good example of noise for artificial pacemakers. T waves 
do not represents ventricular events; the ventricle is simply recharging itself to provide a 
new ventricular pulse. But T waves are not the only possible cause of noise. The signal 
detected by the artificial pacemaker may be full of random noise, even if the electrical lead 
is placed in contact with the heart chamber. Artificial pacemakers have to deal with this 
kind of problems and some solutions are in place thanks to some simple features. Lets 
consider the example of a T wave that may generate a false-positive for a QRS complex. 
There are two feature to avoid this problem. 

Refractory  periods:  a  QRS  complex,  a  refractory  period  ignores  all  ventricular 
signals for a short time in order to avoid false-positives of ventricular events due to T 
waves or noise.

Sensing threshold of electrical signals; this is a minimum voltage that has to be read 
in order to detect an event of the heart. Because ventricular events (QRS complex). This 
higher voltage signals than do T waves, this can be recorded by the pacemaker as a 
threshold for ventricular events. This means that if a certain wave does not provide this 
minimum voltage this is not recorded as a ventricular event. The physician is responsible 
for  this  setting.  A  low  threshold  for  heart  events  may  cause  false-positives,  so  the 
pacemaker  probably  will  be  inhibited.  Alternatively,  a  high  threshold  may  cause  the 
pacemaker does not to sense heart events, so it probably will provide artificial pulses that 
are not needed by the heart. It is also interesting to observe how the ECG changes when 
the  pacemaker  is  providing  artificial  pulses  to  the  heart.  It  results  into  something 
unexpected that has to be taken in consideration. In the ECG that follows we can see a 
single chamber VVI pacemaker with a patient that suffers from atrial fibrillation (this is why 
we do not see any P-wave in this ECG). 
The long spikes on the ECG represents the electrical pulses provided by the pacemaker, 
then a strange and wide QRS complex follows. What really matters for the pacemaker is 
how long this QRS complex is and what is the absolute value of his voltage in order to 
correctly guess refractory periods and thresholds for sensing.
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4. TRIO Specification

TRIO [4  and 5]  (Tempo Reale  ImplicitO)  is  a  formal  language  and a  method  for  the 
specification, analysis and verification of critical, real-time systems. The TRIO language is 
based  on  a  metric  extension  of  first-order  temporal  logic  and  exploits  typical  object-
oriented  features  to  support  the  managing  of  large,  complex,  and  maintainable 
specifications. TRIO specifications are based on the definition of the Dist operator. Dist(A, 
t) is a TRIO formula and intuitively means that it holds if and only if A holds at distance t 
from the current  instant  (i.e.,  the instant  when Dist(A,  t)  is  evaluated)  in  the temporal 
domain. 

From this basic TRIO formula, it  is  possible to derive many different operators whose 
behavior is explained by their names. We have also added some explanatory text for each 
operator.  All the operators are evaluated at the current time instant.

Futr(F, d) ⇔ d ≥ 0 ∧ Dist(F, d) 
F will be true after a time interval of d. 
Past(F, d) ⇔ d ≥ 0 ∧ Dist(F, -d)              
F was true d time instants in the past.
Lastsee(F, d) ⇔ ∀d’ (0<d'<d→Dist(F, d')) 
F holds over a period of length d (boundaries of the interval are excluded).
Lastsie(F, d) ⇔ ∀d’ (0≤d'<d→Dist(F, d')) 
F holds over a period of length d (now is included, now +d is excluded).
Lastsei(F, d) ⇔ ∀d’ (0<d'≤d→Dist(F, d')) 
F holds over a period of length d (now is excluded, now +d is included).
Lastsii(F, d) ⇔ ∀d’ (0≤d'≤d→Dist(F, d')) 
F holds over a period of length d (boundaries of the interval are included).
Lastedee(F, d) ⇔ ∀d'(0 < d'<d → Dist(F, -d')) 
F held over a period of length d in the past (boundaries of the interval are excluded).
Lastedie(F, d) ⇔ ∀d'(0 ≤ d'<d → Dist(F, -d')) 
F held over a period of length d in the past (now is included, now -d is excluded).
Lastedei(F, d) ⇔ ∀d'(0 < d'≤d → Dist(F, -d')) 
F held over a period of length d in the past (now is excluded, now -d is included).
Lastedii(F, d) ⇔ ∀d'(0 ≤ d'≤d → Dist(F, -d')) 
F held over a period of length d in the past (boundaries of the interval are included).
Alw(F) ⇔ ∀d (Dist(F, d))    
F always holds.
SomF (A) ⇔ ∃d(d ≥0 ∧ Dist(F, d)) 
Sometimes in the future F will hold.
Withinee(F, d) ⇔ ∃d'(0<d'<d ∧ Dist(F, d'))   
F will occur within d time units.
Withinie(F, d) ⇔ ∃d'(0≤d'<d ∧ Dist(F, d'))   
F will occur within d time units.
Withinei(F, d) ⇔ ∃d'(0<d'≤d ∧ Dist(F, d'))   
F will occur within d time units.
Withinii(F, d) ⇔ ∃d'(0≤d'≤d ∧ Dist(F, d'))   
F will occur within d time units.
UpToNow (F) ⇔ ∃d ( d > 0 ∧ Past (F, d) ∧ Lastedee (F, d) ) 
F held for a nonnull time interval that ended at the current instant.
Becomes (F) ⇔ F ∧ UpToNow (⁓F) 
F holds at the current instant but it did not hold for a nonnull interval that preceded the current instant.
NextTime (F, t) ⇔ Futr (F, t) ∧ Lastsie (F, t) 
The first time in the future when F will hold is t time units apart from the current instant.
Until (A1, A2) ⇔ ∃t (t > 0 ∧ Futr (A2, t) ∧ Lastsee (A1, t) ) 
A1 holds until A2 becomes true.
Since (A1, A2) ⇔ ∃t (t > 0 ∧ Past (A2, t) ∧ Lastedee (A1, t) ) 
A1 held since A2 became true.
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4.1 TRIO+ modular specification

The pacemaker system specification has been written using an extension of TRIO, called 
TRIO+ that uses the concept of class in order to group together sets of axioms that refer to 
the same component of the system. The following illustration shows an overview of the 
system and the connections between the components.
As you can see the whole system is composed by the Heart and the pacemaker.
The heart is a very simple model of how the heart behaves in response to artificial pulses 

and natural  pulses.  It  provides P waves and QRS waves with  a  certain  heart  rate  in 
absence of artificial pulses. When an artificial pulse is generated, provided the heart reacts 
with a P wave or a QRS wave depending on the chamber in which the pulse has been 
generated.

The pacemaker itself has three main components:
Electrical leads: the leads that are physically connected to the heart chamber. They 

sense electrical signals from the heart. They are also responsible for providing artificial 
pulses.  When  a  signal  is  sensed  then  sensesignal  information  is  transmitted 
instantaneously to the PG. 

Actuators: The electrical circuits responsible for providing the necessary difference 
in electrical potential for artificial pulses for a certain amount of time. When gen is true an 
artificial pulse is generated so ImpOn will be true for a certain amount of time. 

PG: The  pulse generator,  which is  responsible  for  implementing the therapeutic 
behavior  of  the  pacemaker.  It  records  all  the  information  about  functioning  modes, 
refractory periods and thresholds. It  also stores some fundamental parameters like the 
lower rate limit which is the minimum rate the pacemaker must guarantee for the patient's 
heart. Finally when an artificial pulse is needed,  artpulseA or  artpulseV will be true, so 
thanks to the connection to the actuator, a gen event will be true and, as a consequence, 
an electrical pulse will be generated for a certain amount of time.

4.2 PVS theorem prover

PVS [6] is a verification system: that is, a specification language integrated with support 
tools and a theorem prover. It is intended to capture the state-of-the-art in mechanized 
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formal methods and to be sufficiently rugged that it can be used for significant applications. 
PVS  is  a  research  prototype:  it  evolves  and  improves  as  we  develop  or  apply  new 
capabilities, and as the stress of real use exposes new requirements. A tool called TVS 
(TRIO/PVS)  for  translating  TRIO+  specifications  into  PVS  has  been  developed  in 
Politecnico di Milano. Thanks to this feature, the pacemaker system specification has been 
imported into PVS in order to prove some fundamental properties of the system.

4.2.1 TVS system specification

The system is described by four sets of axioms, one for each component of the system. 
The axioms are then grouped together in the system class which states some conjectures 
about the system that must be proved. The heart class states the behavior of the heart in 
responses to atrial and ventricular contraction that can be provided by the heart itself or by 
the pacemaker.  For the purpose of this project it is enough to consider the patient heart 
rate=PR, the time interval between two atrial pulse RR = (1/PR),  the atrium-ventricle time 
interval=HAV, the post ventricular-atrial interval=HPV and the duration of the heart pulses. 
RR= HAV+HPV.
 These are the primary parameters that contribute to the heart behavior, and are used in 
the axioms below.
Electrical leads simply read electrical signals provided by the heart and by Actuators. The 
resulting signals are transmitted to the pacemaker thanks to the connection 3 and 4 in the 
system class (pacemaker_class). Actuators receive artificial pulse commands from the PG 
(connection 5 and 6 of the system class) and provide artificial pulses that have a duration 
PULSEDUR. PG states all the axioms abouts VVI mode and its main parameters which 
are the lower rate limit=LRL=1/TIMEOUT, and the ventricular refractory period=VRP. A 
good example to comment on is the ignoresignalv axiom of the PG class which states that 
we are receiving a ventricular event (senseV) if and only if  we are sensing the signal from 
the electrical leads (sensesignalV) and we are not ignoring it (ignoresignalV).
It is also interesting to make some comments on the conjectures that have been stated in 
the system class (pacemaker_class).  Artpulsev  conjecture states that if  the pacemaker 
provides  an  artificial  pulse,  then  immediately  it  will  sense  an  electrical  signal  as  a 
response. Natpulsev conjecture states the same idea for the Heart, meaning that for every 
natural pulse an electrical signal is immediately generated. Sensev1 conjecture states that 
our axiomatization of ventricular event (senseV) corresponds to the first time instant in 
which  we  sense  an  electrical  signal  from  the  ventricle  chamber  (QRS  wave).  Det1 
conjecture states that our system sense electrical signal is provided only by the heart and 
the pacemaker.  Utility and security  will be discussed in detail in the next chapter. Finally 
the  restore  properties  is  a  variation  of  the  utility  property  that  focuses  on  how  the 
pacemaker measures the heart rate.  All these conjectures have been proved in PVS.

pacemakerHeart_class [ instances : TYPE+ , RR:posreal, HAV:posreal, HPV:posreal, PWAVEDUR:posreal, QRSWAVEDUR:posreal] : 
THEORY 
 BEGIN 
  IMPORTING trio_base, states_and_events, trio_parametric_base[posreal] 
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% declarations 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Pwave:     [instances ->State] 
    QRSwave:   [instances ->State] 
    natpulseA: [instances -> Event] 
    natpulseV: [instances -> Event] 
    sensesignalA: [instances -> Event] 
    sensesignalV: [instances -> Event] 
    senseA: [instances -> Event] 
    senseV: [instances -> Event] 
    ci : VAR instances 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% axioms 

11



    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    pwave1: AXIOM Alw( Lasted_ie( NOT senseV(ci) AND NOT senseA(ci),HPV ) IFF natpulseA(ci)) 
    pwave2: AXIOM Alw( natpulseA(ci) AND UpToNow(NOT Pwave(ci)) IMPLIES Pwave(ci) ) 
    pwave3: AXIOM Alw(NOT natpulseA(ci) AND UpToNow(NOT Pwave(ci)) IMPLIES NOT Pwave(ci)) 
    pwave4: AXIOM Alw( Pwave(ci) IFF 

EX!(t1:posreal | t1<=PWAVEDUR) : 
Lasted_ii(Pwave(ci),t1) AND 
Lasts_ie(Pwave(ci), PWAVEDUR - t1) AND 
Past(UpToNow(NOT Pwave(ci)),t1) AND 
Futr(NOT Pwave(ci), PWAVEDUR - t1) 

) 
    qrswave1: AXIOM Alw( Lasted_ie( NOT senseV(ci), HPV+HAV ) IFF natpulseV(ci)) 
    qrswave2: AXIOM Alw( natpulseV(ci) AND UpToNow(NOT QRSwave(ci)) IMPLIES QRSwave(ci)) 
    qrswave3: AXIOM Alw( NOT natpulseV(ci) AND UpToNow(NOT QRSwave(ci)) IMPLIES NOT QRSwave(ci)) 
    qrswave4: AXIOM Alw( QRSwave(ci) IFF 

EX!(t1:posreal | t1<=QRSWAVEDUR) : 
Lasted_ii(QRSwave(ci),t1) AND 
Lasts_ie(QRSwave(ci), QRSWAVEDUR - t1) AND 
Past(UpToNow(NOT QRSwave(ci)),t1) AND 
Futr(NOT QRSwave(ci), QRSWAVEDUR - t1) 

) 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% conjectures 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %from pwave3 
    pwavecj: CONJECTURE Alw(Pwave(ci) AND UpToNow(NOT Pwave(ci)) IMPLIES natpulseA(ci)) 
    %from qrswave3 
 qrswavecj:CONJECTURE Alw(QRSwave(ci) AND UpToNow(NOT QRSwave(ci)) IMPLIES natpulseV(ci)) 

END pacemakerHeart_class

pacemakerElectricalLead_class [ instances : TYPE+ ] : THEORY 
 BEGIN 
   IMPORTING trio_base, states_and_events, trio_parametric_base[posreal] 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %declarations 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    ImpOn:      [instances -> State] 
    Heartwave:  [instances -> State] 
    sense: [instances -> Event] 
    ci : VAR instances 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %axioms 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   lead1: AXIOM Alw( ImpOn(ci) OR Heartwave(ci) IFF sense(ci)) 

END pacemakerElectricalLead_class

pacemakerActuator_class [ instances : TYPE+, PULSEDUR:posreal ] : THEORY 
   BEGIN 
    IMPORTING trio_base, states_and_events, trio_parametric_base[posreal] 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %declarations 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    gen:    [instances -> Event] 
    ImpOn:  [instances -> State] 
    ImpOff: [instances -> State] 
    ci : VAR instances 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %axioms 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    act1: AXIOM Alw( gen(ci) AND UpToNow(NOT ImpOn(ci)) IMPLIES ImpOn(ci) ) 
    act2: AXIOM Alw( NOT gen(ci) AND UpToNow( NOT ImpOn(ci)) IMPLIES NOT ImpOn(ci)) 
    act3: AXIOM Alw( ImpOn(ci) IFF 
                  EX!(t1:posreal | t1<=PULSEDUR): 
                   Lasted_ii(ImpOn(ci),t1) AND 

      Lasts_ie(ImpOn(ci),PULSEDUR-t1) AND 
      Past(UpToNow(NOT ImpOn(ci)),t1) AND 
      Futr(NOT ImpOn(ci),PULSEDUR-t1)) 

 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %conjectures 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %act2 is equivalent to actcj 
    actcj: CONJECTURE Alw(UpToNow(NOT ImpOn(ci)) AND ImpOn(ci) IMPLIES gen(ci)) 
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END pacemakerActuator_class

pacemakerPG_class [ instances : TYPE+, TIMEOUT:posreal,AV:posreal,VRP:posreal,ARP:posreal,PVARP:posreal ] : THEORY 

  BEGIN 

    IMPORTING trio_base, states_and_events, trio_parametric_base[posreal] 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% declarations 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
    HR: [instances -> TD_Term[posreal]] 
    
    sensesignalV: [instances ->Event] 
    sensesignalA: [instances ->Event] 

    ignoresignalV: [instances ->State] 
    ignoresignalA_ARP: [instances ->State] 
    ignoresignalA_PVARP: [instances ->State] 

    senseV: [instances ->Event] 
    senseA: [instances ->Event] 

    artpulseV: [instances -> Event] 
    artpulseA: [instances -> Event] 

    VVI:  [instances -> State] 
    AAT:  [instances -> State] 
    DDD:  [instances -> State] 
    DDDR: [instances -> State] 

    ci : VAR instances 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% axioms 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    %we can only perform artificial pulses if one of the functioning mode is on 
    artpulse1: AXIOM Alw( artpulseA(ci) IMPLIES DDD(ci) OR AAT(ci) OR DDDR(ci) )    
    artpulse2: AXIOM Alw( artpulseV(ci) IMPLIES DDD(ci) OR VVI(ci) OR DDDR(ci) ) 

    %functioning mode are mutually exclusive 
    mutual: AXIOM Alw( (DDD(ci) IFF not ( VVI(ci) OR AAT(ci) OR DDDR(ci))) 
          AND  (VVI(ci) IFF not ( DDD(ci) OR AAT(ci) OR DDDR(ci))) 
          AND  (AAT(ci) IFF not ( VVI(ci) OR DDD(ci) OR DDDR(ci))) 

  AND (DDDR(ci) IFF not ( VVI(ci) OR AAT(ci) OR DDD(ci)))) 

    %update heart rate 
    updatehr: AXIOM FORALL(tt:Time),(t1:Time): (senseV(ci) AND Lasts(NOT senseV(ci),t1) AND Futr(senseV(ci),t1) 
              IMPLIES Futr(HR(ci)==LV(t1),t1))(tt) 

    %heart rate updated only on heart contraction 
    keephr:   AXIOM FORALL(tt:Time),(x1:posreal),(x2:Time):(HR(ci)==LV(x1) AND Lasts_ei(NOT senseV(ci),x2) 
              IMPLIES Lasts_ei(HR(ci)=LV(x1),x2))(tt) 

    %In DDD an atrial sense shall cause a tracked ventricular pace after a programmed AV delay 
    %unless a ventricular sense was detected beforehand. 
    ax_ddd1: AXIOM Alw( DDD(ci) IMPLIES 
          (artpulseV(ci) IFF Past(senseA(ci),AV) AND Lasted(NOT senseV(ci),AV))) 
    ax_ddd2: AXIOM Alw( DDD(ci) IMPLIES 
           (Lasted(NOT senseA(ci),TIMEOUT) IFF artpulseA(ci))) 

    %In AAT an atrial sense shall trigger an atrial artificial pulse immediatly 
    ax_aat: AXIOM Alw( AAT(ci) AND senseA(ci) IMPLIES artpulseA(ci) ) 

    %In VVI a ventricular sense inhibits ventricular artificial pulses for Timeout 
    ax_vvi: AXIOM Alw(VVI(ci) IMPLIES 
          (Lasted(NOT senseV(ci),TIMEOUT) IFF artpulseV(ci)) ) 

    %The Ventricular Refractory Period shall be the programmed time interval fol- 
    %lowing a ventricular event during which time ventricular senses shall not inhibit 
    %nor trigger pacing. 
    vrp1:  AXIOM Alw( ignoresignalV(ci) IFF 
             EX!(t1:posreal | t1<=VRP): 
             Lasted_ie(ignoresignalV(ci),t1) AND 

       Lasts_ie(ignoresignalV(ci),VRP-t1) AND 
       Past(senseV(ci),t1) AND 
       Futr(NOT ignoresignalV(ci),VRP-t1)) 
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    vrp2: AXIOM Alw( senseV(ci) IMPLIES NowOn(ignoresignalV(ci)) ) 

    %the ARP shall be the programmed time interval following an atrial event during which time atrial 
    %events shall not inhibit nor trigger pacing. 
    arp1: AXIOM Alw( ignoresignalA_ARP(ci) IFF 
           EX!(t1:posreal | t1<=ARP): 

         Lasted_ie(ignoresignalA_ARP(ci),t1) AND 
    Lasts_ie(ignoresignalA_ARP(ci),ARP-t1) AND 
    Past(senseA(ci),t1) AND 
    Futr(NOT ignoresignalA_ARP(ci),ARP-t1)) 

    
    arp2: AXIOM Alw( senseA(ci) IMPLIES NowOn(ignoresignalA_ARP(ci))) 

    %The PVARP shall be the programmable time interval following a ventricular event 
    %when an atrial cardiac event shall not 1. Inhibit an atrial pace. 2. Trigger a ventricular pace. 
    pvarp1: AXIOM Alw( ignoresignalA_PVARP(ci) IFF 
             EX!(t1:posreal | t1<=PVARP): 

             Lasted_ie(ignoresignalA_PVARP(ci),t1) AND 
      Lasts_ie(ignoresignalA_PVARP(ci),PVARP-t1) AND 
      Past(senseV(ci),t1) AND 
      Futr(NOT ignoresignalA_PVARP(ci),PVARP-t1)) 

    
    pvarp2: AXIOM Alw( senseV(ci) IMPLIES NowOn(ignoresignalA_PVARP(ci))) 

    %When ignoresignal is true we must ignore signal from electrical leads 
    ignoresignala: AXIOM Alw( sensesignalA(ci) AND NOT ignoresignalA_ARP(ci) AND NOT ignoresignalA_PVARP(ci) 
       IFF senseA(ci) ) 
    ignoresignalv: AXIOM Alw( sensesignalV(ci) AND NOT ignoresignalV(ci) IFF senseV(ci) )  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %conjectures 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %from ignoresignalv 
    sensevcj: AXIOM Alw( senseV(ci) IMPLIES sensesignalV(ci))  

END pacemakerPG_class

pacemaker_class [ instances : TYPE+ ] : THEORY 

  BEGIN 

    IMPORTING trio_base, states_and_events, trio_parametric_base[posreal] 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% system parameters 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
    TIMEOUT:posreal 
    PULSEDUR:posreal=0.4 
    AV:posreal=150 
    VRP:posreal=320 
    ARP:posreal=250 
    PVARP:posreal=250 

    HAV:posreal 
    HPV:posreal 
    PWAVEDUR: posreal=0.2 
    QRSWAVEDUR: posreal=0.4 
    RR:posreal=HAV+HPV 

    EPS:posreal 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% import classes 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    PG_type : TYPE+ 
    IMPORTING pacemakerPG_class[[instances, PG_type],TIMEOUT,AV,VRP,ARP,PVARP] AS PG 
    PG : PG_type 

    Heart_type : TYPE+ 
    IMPORTING pacemakerHeart_class[[instances, Heart_type],RR,HAV,HPV,PWAVEDUR,QRSWAVEDUR] AS Heart 
    Heart : Heart_type 
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    Actuator_type : TYPE+ 
    IMPORTING pacemakerActuator_class[[instances, Actuator_type],PULSEDUR] AS Actuator 
    actuatorV : Actuator_type 
    actuatorA : Actuator_type 

    ElectricalLead_type : TYPE+ 
    IMPORTING pacemakerElectricalLead_class[[instances, ElectricalLead_type]] AS ElectricalLead 
    elV : ElectricalLead_type 
    elA : ElectricalLead_type 

    ci : VAR instances 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% connections 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    conn1: AXIOM Heartwave(ci,elV)=QRSwave(ci,Heart) 
    conn2: AXIOM Heartwave(ci,elA)=Pwave(ci,Heart) 

    conn3: AXIOM sense(ci,elV)=sensesignalV(ci,PG) 
    conn4: AXIOM sense(ci,elA)=sensesignalA(ci,PG) 

    conn5: AXIOM artpulseV(ci,PG)=gen(ci,actuatorV) 
    conn6: AXIOM artpulseA(ci,PG)=gen(ci,actuatorA) 

    conn7: AXIOM ImpOn(ci,actuatorV)=ImpOn(ci,elV) 
    conn8: AXIOM ImpOn(ci,actuatorA)=ImpOn(ci,elA) 

    conn9:  AXIOM sense(ci,elV)=sensesignalV(ci,Heart) 
    conn10: AXIOM sense(ci,elA)=sensesignalA(ci,Heart) 

    conn11: AXIOM senseA(ci,PG)=senseA(ci,Heart) 
    conn12: AXIOM senseV(ci,PG)=senseV(ci,Heart) 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% axioms 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    c_timeout: AXIOM TIMEOUT>VRP+EPS 
    c_rr:      AXIOM RR>VRP+EPS 
    
    %If we sense a pulse now, we are sure that in the future there will be another pulse 
    simple1:   AXIOM Alw( senseV(ci,PG) 
             IMPLIES EX!(x1:postime): Lasts(NOT senseV(ci,PG),x1) AND Futr(senseV(ci,PG),x1) ) 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %% conjecture 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    
    %artificial pulses are sensed immediatly 
    artpulsev: AXIOM Alw( artpulseV(ci,PG) AND VVI(ci,PG) IMPLIES senseV(ci,PG) ) 

    %natural pulses are sensed immediatly 
    natpulsev: AXIOM Alw( natpulseV(ci,Heart) IMPLIES senseV(ci,PG) ) 

    %sensev represent always the first instant of the signal 
    sensev1: AXIOM Alw( senseV(ci,PG) IMPLIES UpToNow(NOT sensesignalV(ci,PG)) ) 

    %senseV only if natpulsev or artificial pulse v 
    det1: AXIOM Alw( senseV(ci,PG) IMPLIES natpulseV(ci,Heart) OR artpulseV(ci,PG) ) 
    
  
    %We do something useful when RR>Timeout 
    utility1: CONJECTURE Alw( senseV(ci,PG) AND RR>TIMEOUT 
           AND VVI(ci,PG) AND Lasts_ii(VVI(ci,PG), TIMEOUT) 
   IMPLIES Futr(senseV(ci,PG), TIMEOUT) AND Lasts(NOT senseV(ci,PG), TIMEOUT)) 

    %We do not behave wrongly when RR<TIMEOUT 
    security1:CONJECTURE Alw( senseV(ci,PG) AND RR<TIMEOUT 
     AND VVI(ci,PG) AND Lasts_ii(VVI(ci,PG), RR) 
     IMPLIES Futr(senseV(ci,PG), RR) AND Lasts(NOT senseV(ci,PG), RR)) 

    %If our computation of HR is less than RR then after Timeout we are sure that it will be over Timeout 
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    restore: CONJECTURE Alw( EX!(x1:posreal|x1<=RR):(HR(ci,PG)==LV(x1)) AND RR>TIMEOUT 
         AND VVI(ci,PG) AND Lasts_ii(VVI(ci,PG),2*TIMEOUT) 

IMPLIES Futr(HR(ci,PG)==LV(TIMEOUT), 2*TIMEOUT )) 

END pacemaker_class

4.2.2 Utility and Security proof

At this point we can examine what a possible proof [11] of the specification looks like. 
What we are mainly interested in, are the utility and security properties of the system. You 
may have noticed that these properties have been stated in the conjectures section of the 
system class (pacemaker_class).  The utility property states that when the heart rate is 
lower than the objective rate LRL, the pacemaker has to provide artificial pulses in order to 
increase  the  effective  heart-beat  rate.  Reasoning  in  time,  this  means  that  if 
RR=1/HeartNaturalRate > TIMEOUT=1/LRL and if we sense a ventricular contraction in 
the current  time instant,  the next ventricular contraction will  be after  a time interval  of 
TIMEOUT,  moreover  during  this  time  interval  we  will  not  sense  any  other  ventricular 
contraction because neither the heart or the pacemaker will provide any electrical pulse. 
The  safety  property  is  the  opposite  one,  means  that  the  pacemaker  will  not  provide 
artificial  pulses  when  the  heart  rate  is  greater  than  the  objective  rate  LRL.  Again, 
reasoning in time this means that if RR=1/HeartNaturalRate < TIMEOUT=1/LRL and if we 
sense a ventricular contraction in the current time instant, the next ventricular contraction 
will be after a time interval of RR, moreover during this time interval we will not sense any 
other ventricular contraction because neither the heart nor the pacemaker will provide any 
electrical pulse. For the purpose of this document only the utility proof is reported. 

%The proof has mainly two goals, so the proof tree has a big split in the first passages
utility1 :  
{-1}  senseV(ci!1, PG)(tt!1)
{-2}  RR > TIMEOUT
{-3}  VVI(ci!1, PG)(tt!1)
{-4}  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
{1}   senseV(ci!1, PG)(tt!1 + TIMEOUT) AND
       Lasts(NOT senseV(ci!1, PG), TIMEOUT)(tt!1)

%utility 1.1 refers to the half tree of the proof, the one that proves that it is true that we have a 
ventricular contraction at tt!1+TIMEOUT
utility1.1 :  
{-1}  FORALL (ci: instances):
        Alw(senseV(ci, PG) IMPLIES
             EX! (x1: postime):
               Lasts(NOT senseV(ci, PG), x1) AND Futr(senseV(ci, PG), x1))
[-2]  senseV(ci!1, PG)(tt!1)
[-3]  RR > TIMEOUT
[-4]  VVI(ci!1, PG)(tt!1)
[-5]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   senseV(ci!1, PG)(tt!1 + TIMEOUT)

%...Omitted passages...%
%We have sensed a ventricular contraction at tt!1, we know that there will be another ventricular 
contraction at tt!1+x!1. We need to quantify x!1 to complete the proof. We will prove that x!1=TIMEOUT
utility1.1 :  

{-1}  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
{-2}  senseV(ci!1, PG)(x!1 + tt!1)
[-3]  senseV(ci!1, PG)(tt!1)
[-4]  RR > TIMEOUT
[-5]  VVI(ci!1, PG)(tt!1)
[-6]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
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[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%To prove that x!1=TIMEOUT we will consider both cases x!1>TIMEOUT and x!1<TIMEOUT and we will 
prove that this will throw two contradiction. 
Rerunning step: (case "x!1>TIMEOUT")
Case splitting on 
   x!1 > TIMEOUT, 
this yields  2 subgoals: 
utility1.1.1 :  

{-1}  x!1 > TIMEOUT
[-2]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-3]  senseV(ci!1, PG)(x!1 + tt!1)
[-4]  senseV(ci!1, PG)(tt!1)
[-5]  RR > TIMEOUT
[-6]  VVI(ci!1, PG)(tt!1)
[-7]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%We use the VVI main axiom to introduce a new fact
Rerunning step: (lemma ax_vvi)
Using instance
  pacemakerPG_class
      [[instances, PG_type], TIMEOUT, AV, VRP, ARP, PVARP].ax_vvi
Applying ax_vvi 
this simplifies to: 
utility1.1.1 :  

{-1}  FORALL (ci: [instances, PG_type]):
        Alw(VVI(ci) IMPLIES
             (Lasted(NOT senseV(ci), TIMEOUT) IFF artpulseV(ci)))
[-2]  x!1 > TIMEOUT
[-3]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-4]  senseV(ci!1, PG)(x!1 + tt!1)
[-5]  senseV(ci!1, PG)(tt!1)
[-6]  RR > TIMEOUT
[-7]  VVI(ci!1, PG)(tt!1)
[-8]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%We use the TRIO+ class feature for axioms. We know that axiom in {-1} is true for all instances of type 
PG. By the way from the system class we know that the system has only one PG instance called PG. For 
this reason we can instantiate the axiom in {-1} with (ci!1,PG) where ci!1 is the instance of the system 
pacemaker_class
Rerunning step: (inst -1 "(ci!1,PG)")
Instantiating the top quantifier in -1 with the terms: 
 (ci!1,PG),
this simplifies to: 
utility1.1.1 :  

{-1}  Alw(VVI(ci!1, PG) IMPLIES
           (Lasted(NOT senseV(ci!1, PG), TIMEOUT) IFF artpulseV(ci!1, PG)))
[-2]  x!1 > TIMEOUT
[-3]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-4]  senseV(ci!1, PG)(x!1 + tt!1)
[-5]  senseV(ci!1, PG)(tt!1)
[-6]  RR > TIMEOUT
[-7]  VVI(ci!1, PG)(tt!1)
[-8]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%From ax_vvi after some passages we know that an artificial pulse will be provided at time tt!
1+TIMEOUT
utility1.1.1.1 :  

[-1]  artpulseV(ci!1, PG)(TIMEOUT + tt!1)
  |-------
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[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%We know thanks to the system class connections that artpulseV is equivalent to the gen command for 
the Actuator class. More in detail we are interested in the instance of the Actuator that is responsible of 
the ventricle chamber. So for our system class instance ci!1 is true that artpulseV(ci!1, PG) = gen(ci!1, 
actuatorV)
utility1.1.1.1 :  

{-1}  artpulseV(ci!1, PG) = gen(ci!1, actuatorV)
[-2]  gen(ci!1, actuatorV)(tt!1 + TIMEOUT) AND
       UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT)
       IMPLIES ImpOn(ci!1, actuatorV)(tt!1 + TIMEOUT)
[-3]  artpulseV(ci!1, PG)(TIMEOUT + tt!1)
  |-------
[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%In order to prove that we can generate an artificial pulse, we have to prove that we are not already 
providing it. This cause another split for the tree of the proof. We will omit these passages but intuitively 
we can understand that if we are already providing an artificial pulse then soon in the past we had a 
ventricular contraction. But this is in contradiction with the fact that we are providing now an artificial 
pulse command, means that is too early to provide another artificial pulse.
Rerunning step: (case "NOT UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT)")
Case splitting on 
   NOT UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT), 
this yields  2 subgoals: 
utility1.1.1.1.1 :  

[-1]  artpulseV(ci!1, PG) = gen(ci!1, actuatorV)
[-2]  gen(ci!1, actuatorV)(tt!1 + TIMEOUT) AND
       UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT)
       IMPLIES ImpOn(ci!1, actuatorV)(tt!1 + TIMEOUT)
[-3]  artpulseV(ci!1, PG)(TIMEOUT + tt!1)
  |-------
{1}   UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT)
[2]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%After we have proved that we are not already providing an artificial pulse we have all the hypothesis to 
assert that we will provide an artificial pulse at tt!1+TIMEOUT
utility1.1.1.1.2 :  

{-1}  UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT)
[-2]  artpulseV(ci!1, PG) = gen(ci!1, actuatorV)
[-3]  gen(ci!1, actuatorV)(tt!1 + TIMEOUT) AND
       UpToNow(NOT ImpOn(ci!1, actuatorV))(tt!1 + TIMEOUT)
       IMPLIES ImpOn(ci!1, actuatorV)(tt!1 + TIMEOUT)
[-4]  artpulseV(ci!1, PG)(TIMEOUT + tt!1)
  |-------
[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%Because ImpOn is true now this will cause electrical signal on the ventricle chamber (sensesignalV) to 
be true, so the PG will acquire this information. In order to label this signal as a ventricular contraction 
(eg. the first time instant in which we sense an electrical signal in the ventricle) we have to prove that we 
are not ignoring now the electrical signals coming from the lead. 
utility1.1.1.1.2 :  

{-1}  Alw(sensesignalV(ci!1, PG) AND NOT ignoresignalV(ci!1, PG) IFF
           senseV(ci!1, PG))
[-2]  sense(ci!1, elV) = sensesignalV(ci!1, PG)
[-3]  sense(ci!1, elV)(TIMEOUT + tt!1)
[-4]  ImpOn(ci!1, actuatorV) = ImpOn(ci!1, elV)
[-5]  ImpOn(ci!1, actuatorV)(TIMEOUT + tt!1)
  |-------
[1]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%But if we are ignoring the signal then soon in the past (x!2) we have encountered a ventricular 
contraction. But this is in contradiction with the fact that now (tt!1+TIMEOUT) we provide an artificial 
pulse command.
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utility1.1.1.1.2.1 :  

[-1]  senseV(ci!1, PG)(TIMEOUT - x!2 + tt!1)
[-2]  ignoresignalV(ci!1, PG)(TIMEOUT + tt!1)
[-3]  sense(ci!1, elV) = sensesignalV(ci!1, PG)
[-4]  sense(ci!1, elV)(TIMEOUT + tt!1)
  |-------
[1]   ignoresignalV(ci!1, PG)(TIMEOUT - x!2 + VRP + tt!1)
[2]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%In order for the contradiction to succeed we need to state that TIMEOUT>VRP. This is one of the 
interesting not obvious constraints that results from the specification.
utility1.1.1.1.2.1.2 :  

{-1}  TIMEOUT > VRP + EPS
[-2]  VRP = 320
[-3]  x!2 >= 0
[-4]  x!2 > 0
[-5]  x!2 <= VRP
[-6]  senseV(ci!1, PG)(TIMEOUT - x!2 + tt!1)
  |-------
[1]   x!2 < TIMEOUT
[2]   ignoresignalV(ci!1, PG)(TIMEOUT - x!2 + VRP + tt!1)
[3]   senseV(ci!1, PG)(TIMEOUT + tt!1)

Rerunning step: (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of utility1.1.1.1.2.1.2.
This completes the proof of utility1.1.1.1.2.1.

%Finally we have reached the point in which we have proved that there is a ventricular contraction at 
time tt!1+TIMEOUT
utility1.1.1.1.2.2 :  

[-1]  sensesignalV(ci!1, PG)(tt!1 + TIMEOUT) AND
       NOT ignoresignalV(ci!1, PG)(tt!1 + TIMEOUT)
       IFF senseV(ci!1, PG)(tt!1 + TIMEOUT)
[-2]  sense(ci!1, elV) = sensesignalV(ci!1, PG)
[-3]  sense(ci!1, elV)(TIMEOUT + tt!1)
  |-------
{1}   ignoresignalV(ci!1, PG)(tt!1 + TIMEOUT)
[2]   senseV(ci!1, PG)(TIMEOUT + tt!1)

Rerunning step: (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of utility1.1.1.1.2.2.
This completes the proof of utility1.1.1.1.2.
This completes the proof of utility1.1.1.1.

%Now that we proved that we have a ventricular contraction a tt!1+TIMEOUT this is in contradiction with 
{-1}, so it is obvious that x!1<=TIMEOUT
utility1.1.1.2 :  

[-1]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-2]  VVI(ci!1, PG)(TIMEOUT + tt!1)
  |-------
{1}   artpulseV(ci!1, PG)(TIMEOUT + tt!1)
{2}   Lasted(NOT senseV(ci!1, PG), TIMEOUT)(TIMEOUT + tt!1)
[3]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
This completes the proof of utility1.1.1.2.
This completes the proof of utility1.1.1.

%Now we take in consideration the case of x!1<=TIMEOUT 
utility1.1.2 :  

[-1]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-2]  senseV(ci!1, PG)(x!1 + tt!1)
[-3]  senseV(ci!1, PG)(tt!1)
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[-4]  RR > TIMEOUT
[-5]  VVI(ci!1, PG)(tt!1)
[-6]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
{1}   x!1 > TIMEOUT
[2]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%A contraction at time tt!1+x!1 can be provided by the heart or by the pacemaker {-1}, but because x!1 
is <=TIMEOUT this will be a contradiction in both cases.
utility1.1.2 :  

{-1}  natpulseV(ci!1, Heart)(tt!1 + x!1) OR artpulseV(ci!1, PG)(tt!1 + x!1)
[-2]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
{-3}  senseV(ci!1, PG)(tt!1 + x!1)
[-4]  senseV(ci!1, PG)(tt!1)
[-5]  RR > TIMEOUT
[-6]  VVI(ci!1, PG)(tt!1)
[-7]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   x!1 > TIMEOUT
[2]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%First we consider the case of a natural pulse at time tt!1+x!1
Rerunning step: (case "natpulseV(ci!1,Heart)(tt!1+x!1)")
Case splitting on 
   natpulseV(ci!1, Heart)(tt!1 + x!1), 
this yields  2 subgoals: 
utility1.1.2.1 :  

{-1}  natpulseV(ci!1, Heart)(tt!1 + x!1)
[-2]  natpulseV(ci!1, Heart)(tt!1 + x!1) OR artpulseV(ci!1, PG)(tt!1 + x!1)
[-3]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-4]  senseV(ci!1, PG)(tt!1 + x!1)
[-5]  senseV(ci!1, PG)(tt!1)
[-6]  RR > TIMEOUT
[-7]  VVI(ci!1, PG)(tt!1)
[-8]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   x!1 > TIMEOUT
[2]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
%This is the last step of this branch of the tree that cause the contradiction, in fact x!1 must be 
<=TIMEOUT, but because of a natural pulse at x!1+tt!1 we also have that x!1>=RR, but this is in 
contradiction with the fact that RR>TIMEOUT
utility1.1.2.1.2 :  

{-1}  RR = HAV + HPV
[-2]  x!1 >= 0
[-3]  x!1 > 0
[-4]  natpulseV(ci!1, Heart)(tt!1 + x!1)
[-5]  TRUE OR artpulseV(ci!1, PG)(tt!1 + x!1)
[-6]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-7]  senseV(ci!1, PG)(tt!1 + x!1)
[-8]  senseV(ci!1, PG)(tt!1)
[-9]  RR > TIMEOUT
[-10] VVI(ci!1, PG)(tt!1)
[-11] Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   x!1 < HAV + HPV
[2]   x!1 > TIMEOUT
[3]   senseV(ci!1, PG)(TIMEOUT + tt!1)

Rerunning step: (assert)
Simplifying, rewriting, and recording with decision procedures,
his completes the proof of utility1.1.2.1.2.
This completes the proof of utility1.1.2.1.

%...Omitted passages...%
%Now we consider the case in which the ventricular contraction at tt!1+x!1 has been provided by an 
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artificial pulse of the PG. In this case the contradiction come from the fact that we provide an artificial 
pulse at tt!1+x!1 but it is not possible when x!1<TIMEOUT because we already have a ventricular 
contraction at tt!1. 
utility1.1.2.2 :  

{-1}  artpulseV(ci!1, PG)(tt!1 + x!1)
[-2]  Lasts(NOT senseV(ci!1, PG), x!1)(tt!1)
[-3]  senseV(ci!1, PG)(tt!1 + x!1)
[-4]  senseV(ci!1, PG)(tt!1)
[-5]  RR > TIMEOUT
[-6]  VVI(ci!1, PG)(tt!1)
[-7]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   natpulseV(ci!1, Heart)(tt!1 + x!1)
[2]   x!1 > TIMEOUT
[3]   senseV(ci!1, PG)(TIMEOUT + tt!1)

%...Omitted passages...%
This completes the proof of utility1.1.2.2.
This completes the proof of utility1.1.2.
This completes the proof of utility1.1.

%Finally we are back to the main split of the proof. We consider now the right branch where we need to 
prove that Lasts(NOT senseV(ci!1, PG), TIMEOUT)(tt!1)
utility1.2 :  

[-1]  senseV(ci!1, PG)(tt!1)
[-2]  RR > TIMEOUT
[-3]  VVI(ci!1, PG)(tt!1)
[-4]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
{1}   Lasts(NOT senseV(ci!1, PG), TIMEOUT)(tt!1)

%...Omitted passages...%
% In order to prove the consequence, suppose by absurd that we have a ventricular contraction before 
TIMEOUT, lets call this time instant tt!1+it!1. Then this contraction can be provided by a natural pulse, or 
an artificial pulse. In both cases this will throw a contradiction.
utility1.2 :  

{-1}  natpulseV(ci!1, Heart)(it!1 + tt!1) OR
       artpulseV(ci!1, PG)(it!1 + tt!1)
[-2]  0 < it!1
[-3]  it!1 < TIMEOUT
[-4]  senseV(ci!1, PG)(it!1 + tt!1)
[-5]  senseV(ci!1, PG)(tt!1)
[-6]  RR > TIMEOUT
[-7]  VVI(ci!1, PG)(tt!1)
[-8]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------

% We consider the case of natural pulse at tt!1+it!1
Rerunning step: (case "natpulseV(ci!1,Heart)(it!1+tt!1)")
Case splitting on 
   natpulseV(ci!1, Heart)(it!1 + tt!1), 
this yields  2 subgoals: 
utility1.2.1 :  

{-1}  natpulseV(ci!1, Heart)(it!1 + tt!1)
[-2]  natpulseV(ci!1, Heart)(it!1 + tt!1) OR
       artpulseV(ci!1, PG)(it!1 + tt!1)
[-3]  0 < it!1
[-4]  it!1 < TIMEOUT
[-5]  senseV(ci!1, PG)(it!1 + tt!1)
[-6]  senseV(ci!1, PG)(tt!1)
[-7]  RR > TIMEOUT
[-8]  VVI(ci!1, PG)(tt!1)
[-9]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------

%...Omitted passages...%
% The heart according to his model provides a natural pulse if and only if it do not sense any ventricular 
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contraction for a time interval of RR=1/HeartNaturalRate. But this is in contradiction with the fact that we 
have a ventricular contraction at tt!1 and RR>TIMEOUT and it!1<TIMEOUT. In other words the heart its 
providing a pulse too early.
utility1.2.1 :  

{-1}  Lasted_ie(NOT senseV(ci!1, Heart), HAV + HPV)(it!1 + tt!1)
[-2]  natpulseV(ci!1, Heart)(it!1 + tt!1)
[-3]  TRUE OR artpulseV(ci!1, PG)(it!1 + tt!1)
[-4]  0 < it!1
[-5]  it!1 < TIMEOUT
[-6]  senseV(ci!1, PG)(it!1 + tt!1)
[-7]  senseV(ci!1, PG)(tt!1)
[-8]  RR > TIMEOUT
[-9]  VVI(ci!1, PG)(tt!1)
[-10] Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------

%...Omitted passages...%
% Here is the step in which the contradiction applies. See [-1], [-5], [-8], [1]
utility1.2.1.2 :  

{-1}  RR = HAV + HPV
[-2]  natpulseV(ci!1, Heart)(it!1 + tt!1)
[-3]  TRUE OR artpulseV(ci!1, PG)(it!1 + tt!1)
[-4]  0 < it!1
[-5]  it!1 < TIMEOUT
[-6]  senseV(ci!1, PG)(it!1 + tt!1)
[-7]  senseV(ci!1, PG)(tt!1)
[-8]  RR > TIMEOUT
[-9]  VVI(ci!1, PG)(tt!1)
[-10] Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   it!1 < HAV + HPV

Rerunning step: (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of utility1.2.1.2.
This completes the proof of utility1.2.1.

%...Omitted passages...%
% Now we are interested in the case of artificial pulse at time it!1+tt!1
utility1.2.2 :  

{-1}  artpulseV(ci!1, PG)(it!1 + tt!1)
[-2]  0 < it!1
[-3]  it!1 < TIMEOUT
[-4]  senseV(ci!1, PG)(it!1 + tt!1)
[-5]  senseV(ci!1, PG)(tt!1)
[-6]  RR > TIMEOUT
[-7]  VVI(ci!1, PG)(tt!1)
[-8]  Lasts_ii(VVI(ci!1, PG), TIMEOUT)(tt!1)
  |-------
[1]   natpulseV(ci!1, Heart)(it!1 + tt!1)

%...Omitted passages...%
% According to the VVI functioning mode the PG provides an artificial pulse if and only if it do not sense 
any ventricular contraction for a time interval of TIMEOUT. But it!1<TIMEOUT so it is not possible to have 
an artificial pulse at it!1+tt!1 because we already sense a ventricular contraction a tt!1. 
utility1.2.2 :  

{-1}  Lasted(NOT senseV(ci!1, PG), TIMEOUT)(it!1 + tt!1)
[-2]  artpulseV(ci!1, PG)(it!1 + tt!1)
[-3]  0 < it!1
[-4]  it!1 < TIMEOUT
[-5]  senseV(ci!1, PG)(it!1 + tt!1)
[-6]  senseV(ci!1, PG)(tt!1)
[-7]  RR > TIMEOUT
[-8]  VVI(ci!1, PG)(tt!1)
[-9]  VVI(ci!1, PG)(it!1 + tt!1)
  |-------
[1]   natpulseV(ci!1, Heart)(it!1 + tt!1)
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% We open the TRIO operator Lasted and we obtain {1}. Now {-5} and {1} completes the proof.
utility1.2.2 :  

[-1]  artpulseV(ci!1, PG)(it!1 + tt!1)
[-2]  0 < it!1
[-3]  it!1 < TIMEOUT
[-4]  senseV(ci!1, PG)(it!1 + tt!1)
[-5]  senseV(ci!1, PG)(tt!1)
[-6]  RR > TIMEOUT
[-7]  VVI(ci!1, PG)(tt!1)
[-8]  VVI(ci!1, PG)(it!1 + tt!1)
  |-------
{1}   senseV(ci!1, PG)(-it!1 + it!1 + tt!1)
[2]   natpulseV(ci!1, Heart)(it!1 + tt!1)

Rerunning step: (assert)
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of utility1.2.2.
This completes the proof of utility1.2.

% The proof is completed

Q.E.D.

4.3 Zot model checker

Zot [7] is an agile and easily extensible bounded model checker. The tool supports 
different logic languages through a multi-layered approach: its core uses PLTL, and on top 
of it a decidable predicative fragment of TRIO is defined. An interesting feature of Zot is its 
ability to support different encodings of temporal logic as SAT problems by means of 
plugins. This approach encourages experimentation, as plug-ins are expected to be quite 
simple, compact (usually around 500 lines of code), easily modifiable, and extensible. 

Zot offers three basic usage modalities:
● Bounded satisfiability checking (BSC): given as input a specification formula, the 

tool  returns  a  (possibly  empty)  history  (i.e.,  an  execution  trace  of  the  specified 
system)  which  satisfies  the  specification.  An  empty  history  means  that  it  is 
impossible to satisfy the specification. 

● Bounded  model  checking  (BMC):  given  as  input  an  operational  model  of  the 
system, the tool returns a (possibly empty) history (i.e., an execution trace of the 
specified system) which satisfies it. 

● History checking and completion (HCC): The input file can also contain a partial (or 
complete)  history  H.  In  this  case,  if  H  complies  with  the  specification,  then  a 
completed version of H is returned as output, otherwise the output is empty. 

4.3.1 Satisfiability

This axiomatization written in Zot represents the final result of a long iterative process of 
adding  more  and more  details  taken from the  requirements  (e.g.  the  definition  of  the 
refractory period and the modularization of the system). The system written as follows is 
satisfiable for a bounded set of 40 time discrete instants. An example of a possible model 
produced as output by ZOT is the following:
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In this case at instant 5 a natural pulse of the atrium succeeds, in the next time instant the 
atrial pulse is sensed, and after 2 time instants (that is the AV delay) an artificial pulse on 
the ventricle is performed.
In a critical system, as the pacemaker is, the bounded satisfiability is not a sufficient result, 
because some important properties needs to be valid for all possible state spaces and 
even in continuous time. For this reason these properties needs to be logically proved, and 
for this reason another tool is needed: PVS.

5. Pacemaker simulation

For the purpose of this project a JAVA simulation of the pacemaker system has been 
implemented. Given as input the desired parameters of the patient heart, and the set of the 
pacemaker  parameters,  the  program  produce  in  output  an  ECG  showing  the 
corresponding behavior of the pacemaker on the patient heart. It is possible to set the 
parameters of the simulated heart in order to verify all  the possible situations that can 
occurs. Of course, in a real system, the DCM will not have the heart parameters, that will 
be measured by the physician.
The goal of the simulation is to have a concrete feedback on the system axiomatization. 
Moreover the JAVA code takes in consideration the real architecture of the system, in 
order to make a possible reuse of this code when the real hardware will be implemented. 
The code directly follows from the formal specification. In the following picture you can see 
the same classes of the PVS specification.  Electrical leads are not present because they 
are not needed for the scope of simulation. The device control monitor for the physician 
has been included, in order to set the mode and the objective rate of the pacemaker. 
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The DCM (Device Control Monitor) is represented with a GUI where it is possible to set the 
following parameters:

1 Heart Parameters

 HAV: Heart natural distance between an atrial contraction and a ventricular contraction
 RR: Distance between two ventricular contraction
 PWAVEDUR: PWave duration in milliseconds
 PWAVEAMP: Pwave amplitude in millivolts
 QRSWAVEDUR: QRSWave duration in milliseconds
 QRSWAVEAMP: QRSWave amplitude in milliseconds
 ARTWAVEDUR_A: Artificial wave duration that follows from atrium stimulation
 ARTWAVEAMP_A: Artificial wave amplitude that follows from atrium stimulation
 ARTWAVEDUR_V: Artificial wave duration that follows from ventricular stimulation
 ARTWAVEAMO_V: Artificial wave amplitude that follows from ventricular stimulation
 

2 Pacemaker Parameters
 Functioning Mode: VVI, AAT, DDD
 LRL Timeout: Timeout for artificial stimulation according 
 to the functioning mode
 VRP: Refractory period after ventricular stimulation
 ARP: Refractory period after atrial stimulation
 PVARP: Refractory period after ventricular stimulation listening for atrial events

3 Common VVI Situations 
 No Disease heart: Settings for a safe heart
 Atrial Fibrillation: Settings for heart suffering of atrial fibrillation

The output of the simulation will be an ECG that shows how the heart and the pacemaker 
combine  their  behavior.  The  advantage  of  this  simulation  environment  is  that  it  adds 
another level of realism to the problem, which is the Electrocardiogram signal that has 
been modeled in the PVS specification with a binary value (eg: present, not present), while 
here it assumes a range of values. 
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6 Testing

The Java simulator is implemented in order to easily create significant test cases that 
verifies how a real implementation meets the formal requirements.
The test cases presented are related to the system properties proved thanks to the PVS 
tool, and are the following:

● Test Case 1: Security Property, under normal behavior of the patient heart.
● Test Case 2: Utility Property, when both chambers are artificially paced.
● Test Case 3: Utility Property, when only the ventricle is artificially paced.

For verifying the test cases is used what it would be the output of an electrocardiogram as 
the output of the simulator. This version of the electrocardiogram represents heart P wave 
and QRS wave as triangular signal and the pacemaker electrical discharge as a spike, a 
negative impulse.

6.1 Test Case 1: Security

PVS definition:
CONJECTURE  Alw(  senseV  AND  RR<Timeout  AND  DDD  AND  Lasts_ii(DDD,  RR) 
IMPLIES Futr(senseV, RR) AND Lasts(NOT senseV, RR))

Parameters set:
HAV=200ms; HPV=700 ms; RR= HAV+HPV=900ms; Timeout=1100 ms;

Expected Result: 
The pacemaker must not interfere with the natural heart rate. In the electrocardiogram no 
spike should be present.

Test Case 1 confirms the expected result.

26

Figure 7: Test case 1 in the simulator



6.2 Test Case 2: Utility

PVS definition:
CONJECTURE Alw( senseV AND RR>Timeout AND DDD AND Lasts_ii(DDD, Timeout) 
IMPLIES Futr(senseV, Timeout) AND Lasts(NOT senseV, Timeout)) 

Parameters set:
HAV=300ms;  HPV=1200  ms;  RR=  HAV+HPV=1500ms;  Timeout=800  ms; 
AV_delay=200ms

Expected Result: 

The  pacemaker  should  pace  both  chambers.  The  atrium  because  RR>Timeout  and 
ventricle because HAV>AV_delay. Pacemaker spikes both in the atrial and the ventricular 
signal.Test Case 2 confirms the expected result.
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6.3 Test Case 3: Utility

PVS definition:
CONJECTURE Alw( senseV AND RR>Timeout AND DDD AND Lasts_ii(DDD, Timeout) 
IMPLIES Futr(senseV, Timeout) AND Lasts(NOT senseV, Timeout)) 

Parameters set:
HAV=300ms;  HPV=700  ms;  RR=  HAV+HPV=1000ms;  Timeout=1100  ms; 
AV_delay=200ms

Expected Result: 
The pacemaker  should  pace the ventricle  because HAV>AV_delay but  not  the atrium 
because RR<Timeout. Pacemaker spikes only in the ventricular signal.

Test Case 3 confirms the expected result.
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7 Project Management
 
7.1. Organization

The team members are:

    * Valerio Panzica La Manna.
    * Andrea Tommaso Bonanno
    * Alfredo Motta

All team members participated and gave their contribute throughout all the steps of the 
project realized. In particular, once the initial system requirements were fixed formally each 
team  member  cared  the  work  about  one  specific  mode  of  the  pacemaker  to  be 
implemented. 
The related work was divided in the following way:

    * Valerio worked on DDD.
    * Andrea worked on AAT;
    * Alfredo worked on VVI; 

Finally  all  the  different  parts  developed  in  PVS and  ZOT were  merged  and  the  new 
integrated system behavior was tested again.
For  the work concerning the Java Simulator  all  the team members participated to the 
design and coding phases, each taking care of the implementation of the specific mode 
assigned to him.

7.2. Project Timeline

The timeline followed by the project was the following:

 *  09/30/2008 Requirements  :  The  initial  requirements  have  been  fixed  as  a  TRIO 
specification.  The  system requirements  have  been  studied  and  formalized  during  the 
second half of September.
  *  11/15/2008 Formal requirements have been verified by means of Zot and PVS. The 
month of October and the first half of November have been spent by each team member to 
iteratively work on and refine the system requirements as well as to coordinate the work in 
order to synchronize the design of the final whole system.
   * 11/30/2008 A Test Plan has been produced in order to figure out what to focus on for 
the Simulator implementation. 
    * 12/10/2008 Design and Coding: Implementation of the Java Simulator.
    * 12/20/2008 Testing on the simulator.
    * 01/14/2009 Summary report.
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8 Conclusions

The  use  of  formal  methods  for  software  and  hardware  design  is  motivated  by  the 
expectation that, as in other engineering disciplines, performing appropriate mathematical 
analyses  can  contribute  to  the  reliability  and  robustness  of  the  system.  The  formal 
description of the system can be used to guide further development activities, additionally, 
it can be used to verify that the requirements for the system being developed have been 
completely and accurately specified. The field of  formal  methods has its critics.  At the 
current state of the art, proofs of correctness, whether handwritten or computer-assisted, 
need significant time (and thus money) to produce, with limited utility other than assuring 
correctness. This makes formal methods more likely to be used in fields where the benefits 
of having such proofs, or the danger in having undetected errors, makes them worth the 
resources. The pacemaker industry is one of the best example of a life threatening field 
together with aerospace engineering.
Our main aim regarding this project was to understand how to exploit TRIO's expressive 
power in a big real project and what are the pros and cons of using this kind of approach. 
The big advantage of the language and of the tools used is that they help us to develop a 
more  complete  understanding  of  the  system we are  designing.  When  an error  in  the 
specification occurs, it is easy to understand what is wrong. The final result, even if very 
difficult to obtain, is that every axiom written and the relations among them are logically 
correct. This is very rewarding. On  the other hand, the process is very time consuming, 
mainly because of the PVS proof. The ZOT tool is a good compromise between the results 
obtained( the satisfiability), and the speed to obtain it, thanks to its automatic reasoning. 
Another improvement to speed up the entire process could be to create a library of the 
most common self-contained TRIO+  components, already verified in for PVS. In that case 
it would be possible to reduce the PVS proof only to the relation between these. 
Future works for this project includes the coding of the real pacemaker hardware created 
by University of Minnesota based on the PIC18F4520 developed by MICROCHIP.
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